基础语法

第一个Hello World程序

1
2
3
4
5
public class HelloWorld {
public static void main(String[] args){
System.out.println("Hello World!");
}
}

运行结果:

基本语法

编写 Java 程序时,应注意以下几点:

  • 大小写敏感:Java 是大小写敏感的,这就意味着标识符 Hello 与 hello 是不同的。
  • 类名:对于所有的类来说,类名的首字母应该大写。如果类名由若干单词组成,那么每个单词的首字母应该大写,例如 MyFirstJavaClass
  • 方法名所有的方法名都应该以小写字母开头。如果方法名含有若干单词,则后面的每个单词首字母大写,例如main。
  • 源文件名:源文件名必须和类名相同。当保存文件的时候,你应该使用类名作为文件名保存(切记 Java 是大小写敏感的),文件名的后缀为 .java。(如果文件名和类名不相同则会导致编译错误)。
  • 主方法入口:所有的 Java 程序由 public static void main(String[] args) 方法开始执行。

标识符

Java 所有的组成部分都需要名字。类名、变量名以及方法名都被称为标识符。

关于 Java 标识符,有以下几点需要注意:

  • 所有的标识符都应该以字母(A-Z 或者 a-z),美元符($)、或者下划线(_)开始
  • 首字符之后可以是字母(A-Z 或者 a-z),美元符($)、下划线(_)或数字的任何字符组合
  • 关键字不能用作标识符
  • 标识符是大小写敏感的
  • 合法标识符举例:age、$salary、_value、__1_value
  • 非法标识符举例:123abc、-salary

关键字

下面列出了 Java 关键字。这些保留字不能用于常量、变量、和任何标识符的名称。

类别 关键字 说明
访问控制 private 私有的
protected 受保护的
public 公共的
default 默认
类、方法和变量修饰符 abstract 声明抽象
class
extends 扩充,继承
final 最终值,不可改变的
implements 实现(接口)
interface 接口
native 本地,原生方法(非 Java 实现)
new 新,创建
static 静态
strictfp 严格,精准
synchronized 线程,同步
transient 短暂
volatile 易失
程序控制语句 break 跳出循环
case 定义一个值以供 switch 选择
continue 继续
do 运行
else 否则
for 循环
if 如果
instanceof 实例
return 返回
switch 根据值选择执行
while 循环
错误处理 assert 断言表达式是否为真
catch 捕捉异常
finally 有没有异常都执行
throw 抛出一个异常对象
throws 声明一个异常可能被抛出
try 捕获异常
包相关 import 引入
package
基本类型 boolean 布尔型
byte 字节型
char 字符型
double 双精度浮点
float 单精度浮点
int 整型
long 长整型
short 短整型
变量引用 super 父类,超类
this 本类
void 无返回值
保留关键字 goto 是关键字,但不能使用
const 是关键字,但不能使用

注意:Java 的 null 不是关键字,类似于 true 和 false,它是一个字面常量,不允许作为标识符使用。

Java修饰符

像其他语言一样,Java可以使用修饰符来修饰类中方法和属性。主要有两类修饰符:

  • 访问控制修饰符 : default, public , protected, private
  • 非访问控制修饰符 : final, abstract, static, synchronized

注释

单行可以用 ///**/

多行用/**/,中间行用*开头

1
2
3
4
5
6
7
8
9
10
11
public class HelloWorld {
/* 这是第一个Java程序
* 它将输出 Hello World
* 这是一个多行注释的示例
*/
public static void main(String[] args){
// 这是单行注释的示例
/* 这个也是单行注释的示例 */
System.out.println("Hello World");
}
}

源程序与编译型运行区别

对象和类

  • 对象:对象是类的一个实例,有状态和行为。例如,一条狗是一个对象,它的状态有:颜色、名字、品种;行为有:摇尾巴、叫、吃等。
  • :类是一个模板,它描述一类对象的行为和状态。

下图中汽车类(class),而具体的每辆车为该汽车类的对象(object),对象包含了汽车的颜色、品牌、名称等。

类(class)可以看成是创建 Java 对象(object)的模板。

将下图用java代码表示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Dog{
String breed;
int size;
String color;
int age;

void eat(){
}

void run(){
}

void sleep(){
}

void name(){
}
}

一个类可以拥有多个方法,在上面的例子中:eat()、run()、sleep() 和 name() 都是 Dog 类的方法。

构造方法

每个类都有构造方法。如果没有显式地为类定义构造方法,Java 编译器将会为该类提供一个默认构造方法。

在创建一个对象的时候,至少要调用一个构造方法。构造方法的名称必须与类同名,一个类可以有多个构造方法。

1
2
3
4
5
6
7
8
9
public class Puppy{
public Puppy(){
//这是一个构造方法
}

public Puppy(String name){
//这是另一个构造方法
}
}

创建对象

对象是根据类创建的。在Java中,使用关键字 new 来创建一个新的对象。创建对象需要以下三步:

  • 声明:声明一个对象,包括对象名称和对象类型。

  • 实例化:使用关键字 new 来创建一个对象。

  • 初始化:使用 new 创建对象时,会调用构造方法初始化对象。

    1
    2
    3
    4
    5
    6
    7
    8
    public class Puppy{
    public Puppy(String name){
    System.out.println("小狗的名字是:" + name);
    }
    public static void main(String[] args){
    Puppy myPuppy = new Puppy("tommy");
    }
    }

编译并运行上面的程序,会打印出下面的结果:

访问实例变量和方法

通过已创建的对象来访问成员变量和成员方法,如下所示:

1
2
3
4
5
6
/*实例化对象*/
Object referenceVariable = new Constructor();
/*访问类中的变量*/
referenceVariable.variableName;
/*访问类中的方法*/
referenceVariable.methodName();

实例A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
package test;
public class Neko{ //类名首字母大写
int NekoAge;
public Neko(String name){ //构造方法
System.out.println("小猫的名字是:" + name);
}

public void setAge(int age){ //方法名首字母小写
NekoAge = age;
}

public int getAge(){ //方法名首字母小写
System.out.println("小猫的名字是:" + NekoAge);
return NekoAge;
}

public static void main(String[] args){
Neko myNeko = new Neko("neko"); // 对象名称:myNeko,类型:Neko。使用关键字new创建对象myNeko,调用构造方法Neko来初始化对象
myNeko.setAge(3); //调用setAge方法设置小猫的年龄
myNeko.getAge(); //调用getAge方法输出NekoAge
System.out.println(myNeko.NekoAge); //直接输出myNeko对象的NekoAge属性
}
}

运行结果如下:

源文件声明规则

当在一个源文件中定义多个类,并且还有import语句和package语句时,要特别注意这些规则。

  • 一个源文件中只能有一个 public 类,可以有多个非 public 类
  • 源文件的名称应该和 public 类的类名保持一致。例如:源文件中 public 类的类名是 Employee,那么源文件应该命名为Employee.java。
  • 如果一个类定义在某个包中,那么 package 语句应该在源文件的首行。
  • 如果源文件包含 import 语句,那么应该放在 package 语句和类定义之间。如果没有 package 语句,那么 import 语句应该在源文件中最前面。
  • import 语句和 package 语句对源文件中定义的所有类都有效。在同一源文件中,不能给不同的类不同的包声明。

类有若干种访问级别,并且类也分不同的类型:抽象类和 final 类等。这些将在访问控制章节介绍。

除了上面提到的几种类型,Java 还有一些特殊的类,如:内部类、匿名类。

包主要用来对接口进行分类。当开发 Java 程序时,可能编写成百上千的类,因此很有必要对类和接口进行分类。

import语句

在 Java 中,如果给出一个完整的限定名,包括包名、类名,那么 Java 编译器就可以很容易地定位到源代码或者类。import 语句就是用来提供一个合理的路径,使得编译器可以找到某个类。

例如,下面的命令行将会命令编译器载入 java_installation/java/io 路径下的所有类

1
import java.io.*;

实例B

Employee.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public class Employee {
String name;
int age;
String designation;
double salary;

public Employee(String name){ //构造方法
this.name = name;
}

public void empAge(int empAge){
age = empAge;
}

public void empDesignation(String empString){
designation = empString;
}

public void empSalary(double empSalary){
salary = empSalary;
}

public void empPrint(){
System.out.println("姓名:" + name);
System.out.println("年龄:" + age);
System.out.println("职位:" + designation);
System.out.println("薪水:" + salary);
}
}

Employee 类有四个成员变量:name、age、designation 和 salary。该类声明了一个构造方法,该方法只有一个参数name。

程序都是从main方法开始执行。为了能运行这个程序,必须包含main方法并且创建一个实例对象。

EmployeeTest.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class EmployeeTest{
public static void main(String[] args){
Employee emp1 = new Employee("edward");
Employee emp2 = new Employee("si9ma");

emp1.empAge(21);
emp1.empDesignation("初级");
emp1.empSalary(7);

emp2.empAge(27);
emp2.empDesignation("中级");
emp2.empSalary(20);

emp1.empPrint();
emp2.empPrint();
}
}

编译这两个文件并且运行 EmployeeTest 类,运行结果如下:

基本数据类型

Java 有两大数据类型:

  • 内置数据类型
  • 引用数据类型

内置数据类型

Java语言提供了八种基本类型。

六种数字类型(四个整数型byteshortintlong,两个浮点型floatdouble),

一种字符类型char

一种布尔型boolean

对于数值类型的基本类型的取值范围,我们无需强制去记忆,因为它们的值都已经以常量的形式定义在对应的包装类中了。

byte

byte 数据类型是8位、有符号的,以二进制补码表示的整数;

  • 最小值是 -128(-2^7)
  • 最大值是 127(2^7-1)
  • 默认值是 0
  • byte 类型用在大型数组中节约空间,主要代替整数,因为 byte 变量占用的空间只有 int 类型的四分之一;
  • 例子:byte a = 100,byte b = -50。

short

short 数据类型是 16 位、有符号的以二进制补码表示的整数

  • 最小值是 -2^15(-32768)
  • 最大值是 2^15 - 1(32767)
  • Short 数据类型也可以像 byte 那样节省空间。一个short变量是int型变量所占空间的二分之一;
  • 默认值是 0
  • 例子:short s = 1000,short r = -20000。

int

int 数据类型是32位、有符号的以二进制补码表示的整数;

  • 最小值是 -2^31(-2,147,483,6481)
  • 最大值是 -2^31-1(2,147,483,647)
  • 一般地整型变量默认为 int 类型;
  • 默认值是 0
  • 例子:int a = 100000, int b = -200000。

long

long 数据类型是 64 位、有符号的以二进制补码表示的整数;

  • 最小值是 -2^63(-9,223,372,036,854,775,808)
  • 最大值是 2^63 -1(9,223,372,036,854,775,807)
  • 这种类型主要使用在需要比较大整数的系统上;
  • 默认值是 0L
  • 例子: long a = 100000Llong b = -200000L
    “L”理论上不分大小写,但是若写成”l”容易与数字”1”混淆,不容易分辩。所以最好大写。

float

float 数据类型是单精度、32位、符合IEEE 754标准的浮点数;

  • float 在储存大型浮点数组的时候可节省内存空间;
  • 默认值是 0.0f
  • 浮点数不能用来表示精确的值,如货币;
  • 例子:float f1 = 234.5f。

double

double 数据类型是双精度、64 位、符合 IEEE 754 标准的浮点数;

  • 浮点数的默认类型为 double 类型;
  • double类型同样不能表示精确的值,如货币;
  • 默认值是 0.0d
1
2
3
4
5
double   d1  = 7D ;
double d2 = 7.;
double d3 = 8.0;
double d4 = 8.D;
double d5 = 12.9867;

7 是一个 int 字面量,而 7D,7. 和 8.0 是 double 字面量。

char

char 类型是一个单一的 16 位 Unicode 字符;

  • 最小值是 \u0000(十进制等效值为 0);
  • 最大值是 \uffff(即为 65535,65535是16位二进制所能表示的最大值);
  • char 数据类型可以储存任何字符;
  • 例子:char letter = ‘A’;。

boolean

boolean数据类型表示一位的信息;

  • 只有两个取值:true 和 false;
  • 这种类型只作为一种标志来记录 true/false 情况;
  • 默认值是 false
  • 例子:boolean one = true。

实例A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
public class PrimitiveTypeTest {  
public static void main(String[] args) {
// byte
System.out.println("基本类型:byte 二进制位数:" + Byte.SIZE);
System.out.println("包装类:java.lang.Byte");
System.out.println("最小值:Byte.MIN_VALUE=" + Byte.MIN_VALUE);
System.out.println("最大值:Byte.MAX_VALUE=" + Byte.MAX_VALUE);
System.out.println();

// short
System.out.println("基本类型:short 二进制位数:" + Short.SIZE);
System.out.println("包装类:java.lang.Short");
System.out.println("最小值:Short.MIN_VALUE=" + Short.MIN_VALUE);
System.out.println("最大值:Short.MAX_VALUE=" + Short.MAX_VALUE);
System.out.println();

// int
System.out.println("基本类型:int 二进制位数:" + Integer.SIZE);
System.out.println("包装类:java.lang.Integer");
System.out.println("最小值:Integer.MIN_VALUE=" + Integer.MIN_VALUE);
System.out.println("最大值:Integer.MAX_VALUE=" + Integer.MAX_VALUE);
System.out.println();

// long
System.out.println("基本类型:long 二进制位数:" + Long.SIZE);
System.out.println("包装类:java.lang.Long");
System.out.println("最小值:Long.MIN_VALUE=" + Long.MIN_VALUE);
System.out.println("最大值:Long.MAX_VALUE=" + Long.MAX_VALUE);
System.out.println();

// float
System.out.println("基本类型:float 二进制位数:" + Float.SIZE);
System.out.println("包装类:java.lang.Float");
System.out.println("最小值:Float.MIN_VALUE=" + Float.MIN_VALUE);
System.out.println("最大值:Float.MAX_VALUE=" + Float.MAX_VALUE);
System.out.println();

// double
System.out.println("基本类型:double 二进制位数:" + Double.SIZE);
System.out.println("包装类:java.lang.Double");
System.out.println("最小值:Double.MIN_VALUE=" + Double.MIN_VALUE);
System.out.println("最大值:Double.MAX_VALUE=" + Double.MAX_VALUE);
System.out.println();

// char
System.out.println("基本类型:char 二进制位数:" + Character.SIZE);
System.out.println("包装类:java.lang.Character");
// 以数值形式而不是字符形式将Character.MIN_VALUE输出到控制台
System.out.println("最小值:Character.MIN_VALUE=" + (int) Character.MIN_VALUE);
// 以数值形式而不是字符形式将Character.MAX_VALUE输出到控制台
System.out.println("最大值:Character.MAX_VALUE=" + (int) Character.MAX_VALUE);
}
}

Float和Double的最小值和最大值都是以科学记数法的形式输出的,结尾的”E+数字”表示E之前的数字要乘以10的多少次方。比如3.14E3就是3.14 × 10^3 =3140,3.14E-3 就是 3.14 x 10^-3 =0.00314。

实际上,JAVA中还存在另外一种基本类型 void,它也有对应的包装类 java.lang.Void,不过我们无法直接对它们进行操作。

类型默认值

数据类型 默认值
byte 0
short 0
int 0
long 0L
float 0.0f
double 0.0d
char ‘u0000’
String (or any object) null
boolean false
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class Test {
static boolean bool;
static byte by;
static char ch;
static double d;
static float f;
static int i;
static long l;
static short sh;
static String str;

public static void main(String[] args){
System.out.println("Bool :" + bool);
System.out.println("Byte :" + by);
System.out.println("Character:" + ch);
System.out.println("Double :" + d);
System.out.println("Float :" + f);
System.out.println("Integer :" + i);
System.out.println("Long :" + l);
System.out.println("Short :" + sh);
System.out.println("String :" + str);
}
}

引用数据类型

  • 在Java中,引用类型的变量非常类似于C/C++的指针。引用类型指向一个对象,指向对象的变量是引用变量。这些变量在声明时被指定为一个特定的类型,比如 Employee、Puppy 等。变量一旦声明后,类型就不能被改变了。
  • 对象、数组都是引用数据类型。
  • 所有引用类型的默认值都是null。
  • 一个引用变量可以用来引用任何与之兼容的类型。
  • 例子:Site site = new Site(“Runoob”)。

常量

常量在程序运行时是不能被修改的。

在 Java 中使用 final 关键字来修饰常量,声明方式和变量类似:

1
final double PI = 3.1415927;

虽然常量名也可以用小写,但为了便于识别,通常使用大写字母表示常量

字面量可以赋给任何内置类型的变量。例如:

1
2
3
int Decimal = 100;
int octal = 0144;
int hexa =0x64;

和其他语言一样,Java的字符串常量也是包含在两个引号之间的字符序列。下面是字符串型字面量的例子:

1
2
3
"Hello World"
"two\nlines"
"\"This is in quotes\""

字符串常量和字符变量都可以包含任何 Unicode 字符。例如:

1
2
char a = '\u0001';
String a = "\u0001";

Java语言支持一些特殊的转义字符序列。

符号 字符含义
\n 换行 (0x0a)
\r 回车 (0x0d)
\f 换页符(0x0c)
\b 退格 (0x08)
\0 空字符 (0x0)
\s 空格 (0x20)
\t 制表符
" 双引号
' 单引号
\ 反斜杠
\ddd 八进制字符 (ddd)
\uxxxx 16进制Unicode字符 (xxxx)

数据类型转换

整型、实型(常量)、字符型数据可以混合运算。运算中,不同类型的数据先转化为同一类型,然后进行运算。

转换从低级到高级。

1
2
3
低  ------------------------------------>  高

byte,short,char—> int —> long—> float —> double

数据类型转换必须满足如下规则:

  1. 不能对boolean类型进行类型转换。

  2. 不能把对象类型转换成不相关类的对象。

  3. 在把容量大的类型转换为容量小的类型时必须使用强制类型转换。

  4. 转换过程中可能导致溢出或损失精度,例如:

1
2
3
int i =128;   
byte b = (byte)i;
//因为 byte 类型是 8 位,最大值为127,所以当 int 强制转换为 byte 类型时,值 128 时候就会导致溢出。
  1. 浮点数到整数的转换是通过舍弃小数得到,而不是四舍五入,例如:
1
2
(int)23.7 == 23;        
(int)-45.89f == -45

自动类型转换

必须满足转换前的数据类型的位数要低于转换后的数据类型,例如: short数据类型的位数为16位,就可以自动转换位数为32的int类型,同样float数据类型的位数为32,可以自动转换为64位的double类型。

1
2
3
4
5
6
7
8
9
10
public class ZiDongLeiZhuan{
public static void main(String[] args){
char c1 = 'a';//定义一个char类型
int i1 = c1;//char自动类型转换为int
System.out.println("值为a,char自动类型转换为int后的值等于" + i1);
char c2 = 'A';//定义一个char类型
int i2 = c2+1;//char 类型和 int 类型计算
System.out.println("值为A,char类型和int计算后的值等于" + i2);
}
}

运行结果为:

查 ASCII 码表可知,a对应值为 97, A 对应值为 65,所以 i2=65+1=66

强制类型转换

    1. 条件是转换的数据类型必须是兼容的。
    1. 格式:(type)value type是要强制类型转换后的数据类型。
1
2
3
4
5
6
7
public class QiangZhiZhuanHuan{
public static void main(String[] args){
int i1 = 123;
byte b = (byte)i1;//强制类型转换为byte
System.out.println("int强制类型转换为byte后的值等于"+b);
}
}

运行结果为:

隐含强制类型转换

  • 1、 整数的默认类型是 int。
  • 1、小数默认是 double 类型浮点型,在定义 float 类型时必须在数字后面跟上 F 或者 f。

变量

在Java语言中,所有的变量在使用前必须声明。声明变量的基本格式如下:

type identifier [ = value][, identifier [= value] ...] ;

格式说明:

  • type – 数据类型。
  • identifier – 是变量名,可以使用逗号 , 隔开来声明多个同类型变量。

以下列出了一些变量的声明实例。注意有些包含了初始化过程。

1
2
3
4
5
6
int a, b, c;         // 声明三个int型整数:a、 b、c
int d = 3, e = 4, f = 5; // 声明三个整数并赋予初值
byte z = 22; // 声明并初始化 z
String s = "si9ma0v0"; // 声明并初始化字符串 s
double pi = 3.14159; // 声明了双精度浮点型变量 pi
char x = 'x'; // 声明变量 x 的值是字符 'x'。

Java 语言支持的变量类型有:

  • 局部变量(Local Variables):定义在方法、构造方法或语句块中的变量,作用域只限于当前方法、构造方法或语句块中。局部变量必须在使用前声明,并且不能被访问修饰符修饰。
  • 成员变量(Instance Variables):定义在类中、方法之外的变量,作用域为整个类,可以被类中的任何方法、构造方法和语句块访问。成员变量可以被访问修饰符修饰。
  • 静态变量(Class Variables):定义在类中、方法之外的变量,并且使用 static 关键字修饰,作用域为整个类,可以被类中的任何方法、构造方法和语句块访问,静态变量的值在程序运行期间只有一个副本。静态变量可以被访问修饰符修饰。
  • 参数变量(Parameters):方法定义时声明的变量,作为调用该方法时传递给方法的值。参数变量的作用域只限于方法内部。

以下实例中定义了一个 Variable 类,其中包含了一个成员变量 instanceVar 和一个静态变量 staticVar。

method() 方法中定义了一个参数变量 paramVar 和一个局部变量 localVar。在方法内部,我们将局部变量的值赋给成员变量,将参数变量的值赋给静态变量,然后打印出这些变量的值。

在 main() 方法中,我们创建了一个Variable 对象,并调用了它的 method() 方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public class Variable {
private int instanceVar; //成员变量
private static int staticVar; //静态变量
public void method(int paramVar){
int localVar = 10; //局部变量localVar=10

instanceVar = localVar; //成员变量instanceVar=10
staticVar = paramVar;

System.out.println("成员变量instanceVar: " + instanceVar);
System.out.println("静态变量staticVar: " + staticVar);
System.out.println("参数变量paramVar: " + paramVar);
System.out.println("局部变量localVar: " + localVar);
}

public static void main(String[] args){
Variable test = new Variable();
test.method(20);
}
}

运行以上代码,输出如下:

成员变量(实例变量)

  • 成员变量声明在一个类中,但在方法、构造方法和语句块之外。
  • 当一个对象被实例化之后,每个成员变量的值就跟着确定。
  • 成员变量在对象创建的时候创建,在对象被销毁的时候销毁。
  • 成员变量的值应该至少被一个方法、构造方法或者语句块引用,使得外部能够通过这些方式获取实例变量信息。
  • 成员变量可以声明在使用前或者使用后。
  • 访问修饰符可以修饰成员变量。
  • 成员变量对于类中的方法、构造方法或者语句块是可见的。一般情况下应该把成员变量设为私有。通过使用访问修饰符可以使成员变量对子类可见。
  • 成员变量具有默认值。数值型变量的默认值是0,布尔型变量的默认值是 false,引用类型变量的默认值是 null。变量的值可以在声明时指定,也可以在构造方法中指定;
  • 成员变量可以直接通过变量名访问。但在静态方法以及其他类中,就应该使用完全限定名:ObjectReference.VariableName

成员变量的声明语法为:

accessModifier type variableName;

  • accessModifier ——表示访问修饰符,可以是 public、protected、private 或默认访问级别(即没有显式指定访问修饰符)。
  • type ——表示变量的类型。
  • variableName —— 表示变量的名称。

与局部变量不同,成员变量的值在创建对象时被分配,即使未对其初始化,它们也会被赋予默认值,例如 int 类型的变量默认值为 0,boolean 类型的变量默认值为 false。

成员变量可以通过对象访问,也可以通过类名访问(如果它们是静态成员变量)。如果没有显式初始化成员变量,则它们将被赋予默认值。可以在构造函数或其他方法中初始化成员变量,或者通过对象或类名访问它们并设置它们的值。

实例:

声明了两个成员变量 a 和 b,并对其进行了访问和设置。注意,我们可以通过对象访问成员变量(如obj.a),也可以通过类名访问静态成员变量(MyClass.count,其中MyClass是类名,count是静态成员变量)。

1
2
3
4
5
6
7
8
9
10
11
12
public class VariableTest {
private int a; // 私有成员变量a
public String b = "sigma"; // 公有成员变量b

public static void main(String[] args){
VariableTest obj = new VariableTest(); // 声明并创建对象obj
obj.a = 10; // 访问成员变量a,并设置其值为10
System.out.println("a=" + obj.a);
obj.b = "S1GMA"; // 访问成员变量b,并设置其值为"S1GMA"
System.out.println("b=" + obj.b);
}
}

以上实例编译运行结果如下:

静态变量(类变量)

Java 中的静态变量是指在类中定义的一个变量,它与类相关而不是与实例相关,即无论创建多少个类实例,静态变量在内存中只有一份拷贝,被所有实例共享。

静态变量在类加载时被创建,在整个程序运行期间都存在

定义方式

静态变量的定义方式是在类中使用 static 关键字修饰变量,通常也称为类变量。

1
2
3
public class MyClass{
public static int count = 0; //定义一个静态变量 count ,其初始值为 0:
}

访问方式

可以通过类名来访问静态变量(MyClass.count),也可以通过实例名来访问静态变量(obj.count )。

1
2
3
MyClass.count = 10; // 通过类名访问
MyClass obj = new MyClass();
obj.count = 20; // 通过实例名访问

生命周期

静态变量的生命周期与程序的生命周期一样长,即它们在类加载时被创建,在整个程序运行期间都存在,直到程序结束才会被销毁。因此,静态变量可以用来存储整个程序都需要使用的数据,如配置信息、全局变量等。

初始化时机

静态变量在类加载时被初始化,其初始化顺序与定义顺序有关。

如果一个静态变量依赖于另一个静态变量,那么它必须在后面定义。

1
2
3
4
5
6
public class MyClass {
public static int count1 = 0;
public static int count2 = count1 + 1;
// 其他成员变量和方法
}
//count1 要先于 count2 初始化,否则编译时会报错。

常量和静态变量的区别

常量也是与类相关的,但它是用 final关键字修饰的变量,一旦被赋值就不能再修改。与静态变量不同的是,常量在编译时就已经确定了它的值,而静态变量的值可以在运行时改变。另外,常量通常用于存储一些固定的值,如数学常数、配置信息等,而静态变量通常用于存储可变的数据,如计数器、全局状态等。

总之,静态变量是与类相关的变量,具有唯一性和共享性,可以用于存储整个程序都需要使用的数据,但需要注意初始化时机和与常量的区别。

静态变量的访问修饰符

静态变量的访问修饰符可以是 public、protected、private 或者默认的访问修饰符(即不写访问修饰符)。

需要注意的是,静态变量的访问权限与实例变量不同,因为静态变量是与类相关的,不依赖于任何实例。

静态变量的线程安全性

由于静态变量是共享的,所以需要注意其线程安全性。多个线程同时对静态变量进行读写操作可能会导致数据不一致或者出现竞态条件。因此,在多线程环境中使用静态变量时需要进行同步操作或者使用线程安全的方式访问。

静态变量的命名规范

静态变量的命名规范与实例变量相同,一般采用驼峰命名法,并且要用 static 关键字明确标识。例如:

1
2
3
4
public class MyClass {
public static int MAX_COUNT = 100;
// 其他成员变量和方法
}

静态变量的使用场景

静态变量通常用于以下场景:

  • 存储全局状态或配置信息
  • 计数器或统计信息
  • 缓存数据或共享资源
  • 工具类的常量或方法
  • 单例模式中的实例变量

实例A

以下实例定义了一个 AppConfig 类,其中包含了三个静态变量 APP_NAME、APP_VERSION 和 DATABASE_URL,用于存储应用程序的名称、版本和数据库连接URL。这些变量都被声明为 final,表示它们是不可修改的常量。

在 main() 方法中,我们打印出了这些静态变量的值。

1
2
3
4
5
6
7
8
9
10
11
public class AppConfig {
public static final String APP_NAME = "MyApp";
public static final String APP_VERSION = "1.0.1";
public static final String DATEBASE_URL = "jdbc:mysql://localhost:4000/mydb";

public static void main(String[] args){
System.out.println("APP name: " + AppConfig.APP_NAME);
System.out.println("APP version: " + AppConfig.APP_VERSION);
System.out.println("Datebase URL: " + AppConfig.DATEBASE_URL);
}
}

编译运行结果如下:

可以看到,这些静态变量存储的全局配置信息可以在整个程序中使用,并且不会被修改。通过它可以很方便地存储全局配置信息,或者实现其他需要全局共享的数据。

实例B

以下实例定义了一个 Counter 类,其中包含了一个静态变量 count,用于记录创建了多少个 Counter 对象。

每当创建一个新的对象时,构造方法会将计数器加一。静态方法 getCount() 用于获取当前计数器的值。

在 main() 方法中,我们创建了三个 Counter 对象,并打印出了计数器的值。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Counter {
private static int cnt = 0;

public Counter(){
cnt++;
}

public static int getCount(){
return cnt;
}

public static void main(String[] args){
Counter cnta = new Counter();
Counter cntb = new Counter();
Counter cntc = new Counter();
System.out.println("目前为止创建的对象数:" + Counter.getCount());
}
}

编译运行结果如下:

可以看到,计数器记录了创建了三个对象。这个例子展示了静态变量的一个简单应用,通过它我们可以很方便地统计对象的创建次数,或者记录其他需要全局共享的数据。

修饰符

Java语言提供了很多修饰符,主要分为以下两类:

  • 访问修饰符
  • 非访问修饰符

修饰符用来定义类、方法或者变量,通常放在语句的最前端。

如:

1
2
3
4
5
6
7
8
9
public class ClassName{
//...
}
private boolean myFlag;
static final double weeks = 9.5;
protected static final int BOXWIDTH = 42;
public static void main(String[] args){
//
}

访问控制修饰符

Java中,可以使用访问控制符来保护对类、变量、方法和构造方法的访问。Java 支持 4 种不同的访问权限。

  • default (即默认,什么也不写): 在同一包内可见,不使用任何修饰符。使用对象:类、接口、变量、方法。
  • private : 在同一类内可见。使用对象:变量、方法。 注意:不能修饰类(外部类)
  • public : 对所有类可见。使用对象:类、接口、变量、方法
  • protected : 对同一包内的类和所有子类可见。使用对象:变量、方法。 注意:不能修饰类(外部类)
修饰符 当前类 同一包内 子孙类(同一包) 子孙类(不同包) 其他包
public Y Y Y Y Y
protected Y Y Y Y/N(说明 N
default Y Y Y N N
private Y N N N N

默认访问修饰符-不使用任何关键字

使用默认访问修饰符声明的变量和方法,对同一个包内的类是可见的。接口里的变量都隐式声明为 public static final,而接口里的方法默认情况下访问权限为 public

如下例所示,变量和方法的声明可以不使用任何修饰符。

1
2
3
4
String version = "1.5.1";
boolean processOrder(){
return true;
}

私有访问修饰符-private

私有访问修饰符是最严格的访问级别,所以被声明为 private 的方法、变量和构造方法只能被所属类访问,并且接口不能声明为 private

声明为私有访问类型的变量只能通过类中公共的 getter 方法被外部类访问。

Private 访问修饰符的使用主要用来隐藏类的实现细节和保护类的数据。

下面的类使用了私有访问修饰符-private:

1
2
3
4
5
6
7
8
9
10
11
public class Logger{
private String format;

public String getFormat(){
return this.format;
}

public void setFromat(String format){
this.format = format;
}
}

实例中,Logger 类中的 format 变量为私有变量,所以其他类不能直接得到和设置该变量的值。为了使其他类能够操作该变量,定义了两个 public 方法:getFormat() (返回 format的值)和 setFormat(String)(设置 format 的值)

公有访问修饰符-public

被声明为 public 的类、方法、构造方法和接口能够被任何其他类访问。

如果几个相互访问的 public 类分布在不同的包中,则需要导入相应 public 类所在的包。由于类的继承性,类所有的公有方法和变量都能被其子类继承。

以下函数使用了公有访问控制:

1
2
3
public static void main(String[] args){
//...
}

Java 程序的 main() 方法必须设置成公有的(public),否则,Java 解释器将不能运行该类。

受保护的访问修饰符-protected

protected 需要从以下两个点来分析说明:

  • 子类与基类在同一包中:被声明为 protected 的变量、方法和构造器(构造方法)能被同一个包中的任何其他类访问;
  • 子类与基类不在同一包中:那么在子类中,子类实例可以访问其从父类继承而来的 protected 方法,而不能访问基类实例的protected方法。

protected 可以修饰数据成员,构造方法,方法成员,不能修饰类(内部类除外)

接口及接口的成员变量和成员方法不能声明为 protected。 可以看看下图演示:

子类能访问 protected 修饰符声明的方法和变量,这样就能保护不相关的类使用这些方法和变量。

下面的父类使用了 protected 访问修饰符,子类重写了父类的 openSpeaker() 方法。

1
2
3
4
5
6
7
8
9
10
11
class AudioPlayer{
portected boolean openSpeaker(Speaker sp){
//实现细节2
}
}

class StreamingAudioPlayer extends AudioPlayer {
protected boolean openSpeaker(Speaker sp) {
// 实现细节2
}
}

如果把 openSpeaker() 方法声明为 private,那么除了 AudioPlayer 外,其他类将不能访问该方法。

如果把 openSpeaker() 声明为 public,那么所有的类都能够访问该方法。

如果我们只想让该方法对其所在类的子类可见,则将该方法声明为 protected。

访问控制和继承

请注意以下方法继承的规则:

  • 父类中声明为 public 的方法在子类中也必须为 public。
  • 父类中声明为 protected 的方法在子类中要么声明为 protected,要么声明为 public,不能声明为 private。
  • 父类中声明为 private 的方法,不能够被子类继承。

非访问修饰符

static 修饰符——用来修饰类方法和类变量。

final 修饰符——用来修饰类、方法和变量,final 修饰的类不能够被继承,修饰的方法不能被继承类重新定义,修饰的变量为常量,是不可修改的。

abstract 修饰符——用来创建抽象类和抽象方法。

synchronized 和 volatile 修饰符——主要用于线程的编程。

static 修饰符

  • 静态变量:

    static 关键字用来声明独立于对象的静态变量,无论一个类实例化多少对象,它的静态变量只有一份拷贝。 静态变量也被称为类变量。局部变量不能被声明为 static 变量。

  • 静态方法:

    static 关键字用来声明独立于对象的静态方法。静态方法不能使用类的非静态变量。静态方法从参数列表得到数据,然后计算这些数据。

对类变量和方法的访问可以直接使用 classname.variablenameclassname.methodname 的方式访问。

例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class InstanceCounter{
private static int numInstances = 0;

protected static int getCount(){
return numInstances;
}

private static void addInstance(){
numInstances++;
}

InstanceCounter(){
InstanceCounter.addInstance();
}

public static void main(String[] args){
System.out.println("Starting with " + InstanceCounter.getCount() + " instances");
for(int i = 0;i < 500;++i){
new InstanceCounter();
}
System.out.println("Created " + InstanceCounter.getCount() + " instances");
}
}

运行编辑结果如下:

final 修饰符

final 变量:

final 表示”最后的、最终的”含义,变量一旦赋值后,不能被重新赋值。被 final 修饰的实例变量必须显式指定初始值。

final 修饰符通常和 static 修饰符一起使用来创建类常量。

1
2
3
4
5
6
7
8
9
10
public class Test{
final int value = 10;
// 下面是声明常量的实例
public static final int BOXWIDTH = 6;
static final String TITLE = "Manager";

public void changeValue(){
value = 12; //将输出一个错误(因为value被final修饰了,不能被重新赋值)
}
}

final 方法

父类中的 final 方法可以被子类继承,但是不能被子类重写。

声明 final 方法的主要目的是防止该方法的内容被修改。

如下所示,使用 final 修饰符声明方法。

1
2
3
4
5
public class Test{
public final void changeName(){
// 方法体
}
}

final 类

final 类不能被继承,没有类能够继承 final 类的任何特性。

1
2
3
public final class Test {
// 类体
}

abstract 修饰符

抽象类:

抽象类不能用来实例化对象,声明抽象类的唯一目的是为了将来对该类进行扩充。

一个类不能同时被 abstract 和 final 修饰。如果一个类包含抽象方法,那么该类一定要声明为抽象类,否则将出现编译错误。

抽象类可以包含抽象方法和非抽象方法。

1
2
3
4
5
6
7
abstract class Carbvan{
private double price;
private String model;
private String year;
public abstract void goFast();//抽象方法
public abstract void changeColor();
}

抽象方法

抽象方法是一种没有任何实现的方法,该方法的具体实现由子类提供。

抽象方法不能被声明成 final 和 static

任何继承抽象类的子类必须实现父类的所有抽象方法,除非该子类也是抽象类。

如果一个类包含若干个抽象方法,那么该类必须声明为抽象类。抽象类可以不包含抽象方法。

抽象方法的声明以分号结尾,例如:**public abstract sample();**。

1
2
3
4
5
6
7
8
9
10
public abstract class SuperClass{
abstract void m(); //抽象方法
}

class SubClass extends SuperClass{
//实现抽象方法
void m(){
.........
}
}

synchronized 修饰符

synchronized 关键字声明的方法同一时间只能被一个线程访问。synchronized 修饰符可以应用于四个访问修饰符。

1
2
3
public synchronized void showDetails(){
.......
}

transient 修饰符

序列化的对象包含被 transient 修饰的实例变量时,java 虚拟机(JVM)跳过该特定的变量。

该修饰符包含在定义变量的语句中,用来预处理类和变量的数据类型。

1
2
public transient int limit = 55;   // 不会持久化
public int b; // 持久化

volatile 修饰符

volatile 修饰的成员变量在每次被线程访问时,都强制从共享内存中重新读取该成员变量的值。而且,当成员变量发生变化时,会强制线程将变化值回写到共享内存。这样在任何时刻,两个不同的线程总是看到某个成员变量的同一个值。

一个 volatile 对象引用可能是 null。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class MyRunnable implements Runnable
{
private volatile boolean active;
public void run()
{
active = true;
while (active) // 第一行
{
// 代码
}
}
public void stop()
{
active = false; // 第二行
}
}

通常情况下,在一个线程调用 run() 方法(在 Runnable 开启的线程),在另一个线程调用 stop() 方法。 如果 第一行 中缓冲区的 active 值被使用,那么在 第二行 的 active 值为 false 时循环不会停止。

但是以上代码中我们使用了 volatile 修饰 active,所以该循环会停止。

运算符

运算符分成以下几类:

  • 算术运算符
  • 关系运算符
  • 位运算符
  • 逻辑运算符
  • 赋值运算符
  • 其他运算符

算数运算符

表格中的实例假设整数变量A的值为10,变量B的值为20:

操作符 描述 例子
+ 加法 - 相加运算符两侧的值 A + B 等于 30
- 减法 - 左操作数减去右操作数 A – B 等于 -10
* 乘法 - 相乘操作符两侧的值 A * B等于200
/ 除法 - 左操作数除以右操作数 B / A等于2
取余 - 左操作数除以右操作数的余数 B%A等于0
++ 自增: 操作数的值增加1 B++ 或 ++B 等于 21
自减: 操作数的值减少1 B– 或 –B 等于 19

实例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class Test {

public static void main(String[] args) {
int a = 10;
int b = 20;
int c = 25;
int d = 25;
System.out.println("a + b = " + (a + b) );
System.out.println("a - b = " + (a - b) );
System.out.println("a * b = " + (a * b) );
System.out.println("b / a = " + (b / a) );
System.out.println("b % a = " + (b % a) );
System.out.println("c % a = " + (c % a) );
System.out.println("a++ = " + (a++) );
System.out.println("a-- = " + (a--) );
// 查看 d++ 与 ++d 的不同
System.out.println("d++ = " + (d++) );
System.out.println("++d = " + (++d) );
}
}

以上实例编译运行结果如下:

自增自减运算符

1、自增(++)自减(–)运算符是一种特殊的算术运算符,在算术运算符中需要两个操作数来进行运算,而自增自减运算符是一个操作数。

1
2
3
4
5
6
7
8
9
10
public class selfAddMinus{
public static void main(String[] args){
int a = 3;//定义一个变量;
int b = ++a;//自增运算
int c = 3;
int d = --c;//自减运算
System.out.println("进行自增运算后的值等于"+b);
System.out.println("进行自减运算后的值等于"+d);
}
}

  • int b = ++a; 拆分运算过程为: a=a+1=4; b=a=4, 最后结果为b=4,a=4
  • int d = –c; 拆分运算过程为: c=c-1=2; d=c=2, 最后结果为d=2,c=2

运行结果为:

2、前缀自增自减法(++a,–a): 先进行自增或者自减运算,再进行表达式运算。

3、后缀自增自减法(a++,a–): 先进行表达式运算,再进行自增或者自减运算 实例:

1
2
3
4
5
6
7
8
9
10
public class selfAddMinus{
public static void main(String[] args){
int a = 5;
int b = 5;
int x = 2*++a;
int y = 2*b++;
System.out.println("自增运算符前缀运算后a="+a+",x="+x);
System.out.println("自增运算符后缀运算后b="+b+",y="+y);
}
}

运行结果是:

关系运算符

下表为Java支持的关系运算符,表格中的实例整数变量A的值为10,变量B的值为20:

运算符 描述 例子
== 检查如果两个操作数的值是否相等,如果相等则条件为真。 (A == B)为假。
!= 检查如果两个操作数的值是否相等,如果值不相等则条件为真。 (A != B) 为真。
> 检查左操作数的值是否大于右操作数的值,如果是那么条件为真。 (A> B)为假。
< 检查左操作数的值是否小于右操作数的值,如果是那么条件为真。 (A <B)为真。
>= 检查左操作数的值是否大于或等于右操作数的值,如果是那么条件为真。 (A> = B)为假。
<= 检查左操作数的值是否小于或等于右操作数的值,如果是那么条件为真。 (A <= B)为真。

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Test {

public static void main(String[] args) {
int a = 10;
int b = 20;
System.out.println("a == b = " + (a == b) );
System.out.println("a != b = " + (a != b) );
System.out.println("a > b = " + (a > b) );
System.out.println("a < b = " + (a < b) );
System.out.println("b >= a = " + (b >= a) );
System.out.println("b <= a = " + (b <= a) );
}
}

编译运行结果如下:

位运算符

Java定义了位运算符,应用于整数类型(int),长整型(long),短整型(short),字符型(char),和字节型(byte)等类型。

位运算符作用在所有的位上,并且按位运算。假设a = 60,b = 13;它们的二进制格式表示将如下:

1
2
3
4
5
6
7
A = 0011 1100
B = 0000 1101
-----------------
A&B = 0000 1100
A | B = 0011 1101
A ^ B = 0011 0001
~A = 1100 0011

下表列出了位运算符的基本运算,假设整数变量 A 的值为 60 和变量 B 的值为 13:

操作符 描述 例子
如果相对应位都是1,则结果为1,否则为0 (A&B),得到12,即0000 1100
| 如果相对应位都是 0,则结果为 0,否则为 1 (A | B)得到61,即 0011 1101
^ 如果相对应位值相同,则结果为0,否则为1 (A ^ B)得到49,即 0011 0001
按位取反运算符翻转操作数的每一位,即0变成1,1变成0。 (〜A)得到-61,即1100 0011
<< 按位左移运算符。左操作数按位左移右操作数指定的位数。 A << 2得到240,即 1111 0000
>> 按位右移运算符。左操作数按位右移右操作数指定的位数。 A >> 2得到15即 1111
>>> 按位右移补零操作符。左操作数的值按右操作数指定的位数右移,移动得到的空位以零填充。 A>>>2得到15即0000 1111

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class Test {
public static void main(String[] args) {
int a = 60; /* 60 = 0011 1100 */
int b = 13; /* 13 = 0000 1101 */
int c = 0;
c = a & b; /* 12 = 0000 1100 */
System.out.println("a & b = " + c );

c = a | b; /* 61 = 0011 1101 */
System.out.println("a | b = " + c );

c = a ^ b; /* 49 = 0011 0001 */
System.out.println("a ^ b = " + c );

c = ~a; /*-61 = 1100 0011 */
System.out.println("~a = " + c );

c = a << 2; /* 240 = 1111 0000 */
System.out.println("a << 2 = " + c );

c = a >> 2; /* 15 = 1111 */
System.out.println("a >> 2 = " + c );

c = a >>> 2; /* 15 = 0000 1111 */
System.out.println("a >>> 2 = " + c );
}
}

以上实例编译运行结果如下:

逻辑运算符

下表列出了逻辑运算符的基本运算,假设布尔变量A为真,变量B为假。

操作符 描述 例子
&& 称为逻辑与运算符。当且仅当两个操作数都为真,条件才为真。 (A && B)为假。
| | 称为逻辑或操作符。如果任何两个操作数任何一个为真,条件为真。 (A | | B)为真。
称为逻辑非运算符。用来反转操作数的逻辑状态。如果条件为true,则逻辑非运算符将得到false。 !(A && B)为真。

实例

1
2
3
4
5
6
7
8
9
public class Test {
public static void main(String[] args) {
boolean a = true;
boolean b = false;
System.out.println("a && b = " + (a&&b));
System.out.println("a || b = " + (a||b) );
System.out.println("!(a && b) = " + !(a && b));
}
}

编译运行结果如下:

短路逻辑运算符

当使用与逻辑运算符时,在两个操作数都为true时,结果才为true,但是当得到第一个操作为false时,其结果就必定是false,这时候就不会再判断第二个操作了。

1
2
3
4
5
6
7
8
public class LuoJi{
public static void main(String[] args){
int a = 5;
boolean b = (a<4)&&(a++<10);
System.out.println(("使用短路逻辑运算符的结果为: " + b));
System.out.println("a的结果为: " + a);
}
}

运行结果为:

该程序使用到了短路逻辑运算符(&&),首先判断 a<4 的结果为 false,则 b 的结果必定是 false,所以不再执行第二个操作 a++<10 的判断,所以 a 的值为 5。

赋值运算符

下面是Java语言支持的赋值运算符:

操作符 描述 例子
= 简单的赋值运算符,将右操作数的值赋给左侧操作数 C = A + B将把A + B得到的值赋给C
+ = 加和赋值操作符,它把左操作数和右操作数相加赋值给左操作数 C + = A等价于C = C + A
- = 减和赋值操作符,它把左操作数和右操作数相减赋值给左操作数 C - = A等价于C = C - A
* = 乘和赋值操作符,它把左操作数和右操作数相乘赋值给左操作数 C * = A等价于C = C * A
/ = 除和赋值操作符,它把左操作数和右操作数相除赋值给左操作数 C / = A,C 与 A 同类型时等价于 C = C / A
(%)= 取模和赋值操作符,它把左操作数和右操作数取模后赋值给左操作数 C%= A等价于C = C%A
<< = 左移位赋值运算符 C << = 2等价于C = C << 2
>> = 右移位赋值运算符 C >> = 2等价于C = C >> 2
&= 按位与赋值运算符 C&= 2等价于C = C&2
^ = 按位异或赋值操作符 C ^ = 2等价于C = C ^ 2
| = 按位或赋值操作符 C | = 2等价于C = C | 2

实例

下面的简单示例程序演示了赋值运算符。复制并粘贴下面的Java程序并保存为Test.java文件,然后编译并运行这个程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public class Test {
public static void main(String[] args) {
int a = 10;
int b = 20;
int c = 0;
c = a + b;
System.out.println("c = a + b = " + c );
c += a ;
System.out.println("c += a = " + c );
c -= a ;
System.out.println("c -= a = " + c );
c *= a ;
System.out.println("c *= a = " + c );
a = 10;
c = 15;
c /= a ;
System.out.println("c /= a = " + c );
a = 10;
c = 15;
c %= a ;
System.out.println("c %= a = " + c );
c <<= 2 ;
System.out.println("c <<= 2 = " + c );
c >>= 2 ;
System.out.println("c >>= 2 = " + c );
c >>= 2 ;
System.out.println("c >>= 2 = " + c );
c &= a ;
System.out.println("c &= a = " + c );
c ^= a ;
System.out.println("c ^= a = " + c );
c |= a ;
System.out.println("c |= a = " + c );
}
}

运行结果如下:

条件运算符(?:)

条件运算符也被称为三元运算符。该运算符有3个操作数,并且需要判断布尔表达式的值。该运算符的主要是决定哪个值应该赋值给变量。

1
variable x = (expression) ? value if true : value if false

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Test {
public static void main(String[] args){
int a , b;
a = 10;
// 如果 a 等于 1 成立,则设置 b 为 20,否则为 30
b = (a == 1) ? 20 : 30;
System.out.println( "Value of b is : " + b );

// 如果 a 等于 10 成立,则设置 b 为 20,否则为 30
b = (a == 10) ? 20 : 30;
System.out.println( "Value of b is : " + b );
}
}

运行结果为:

instanceof 运算符

该运算符用于操作对象实例,检查该对象是否是一个特定类型(类类型或接口类型)。

instanceof运算符使用格式如下:

1
2
( Object reference variable ) instanceof  (class/interface type)
//(对象引用变量)实例(类/接口类型)

如果运算符左侧变量所指的对象,是操作符右侧类或接口(class/interface)的一个对象,那么结果为真。

下面是一个例子:

1
2
String name = "James";
boolean result = name instanceof String; // 由于 name 是 String 类型,所以返回真

如果被比较的对象兼容于右侧类型,该运算符仍然返回 true。

看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
class Vehicle {}

public class Car extends Vehicle {
public static void main(String[] args){
Vehicle a = new Car();
boolean result = a instanceof Car;
System.out.println( result);
}
}

//结果为
//true

Java运算符优先级

下表中具有最高优先级的运算符在的表的最上面,最低优先级的在表的底部。

类别 操作符 关联性
后缀 () [] . (点操作符) 左到右
一元 expr++ expr– 从左到右
一元 ++expr –expr + - ~ ! 从右到左
乘性 * /% 左到右
加性 + - 左到右
移位 >> >>> << 左到右
关系 > >= < <= 左到右
相等 == != 左到右
按位与 左到右
按位异或 ^ 左到右
按位或 | 左到右
逻辑与 && 左到右
逻辑或 | | 左到右
条件 ?: 从右到左
赋值 = + = - = * = / =%= >> = << =&= ^ = | = 从右到左
逗号 左到右

循环结构

Java中有三种主要的循环结构:

  • while 循环
  • do…while 循环
  • for 循环

在 Java5 中引入了一种主要用于数组的增强型 for 循环。

while 循环

while是最基本的循环,对于 while 语句而言,如果不满足条件,则不能进入循环。它的结构为:

1
2
3
while( 布尔表达式 ) {
//循环内容
}

只要布尔表达式为 true,循环就会一直执行下去。

实例:

1
2
3
4
5
6
7
8
9
10
public class Test{
public static void main(String[] args){
int x;
x = 15;
while(x < 20){
System.out.println("x = "+ x);
x++;
}
}
}

该实例编译运行结果为:

do…while 循环

即使不满足条件,也至少执行一次。

do…while 循环和 while 循环相似,不同的是,do…while 循环至少会执行一次。

1
2
3
do {
//代码语句
}while(布尔表达式);

注意:布尔表达式在循环体的后面,所以语句块在检测布尔表达式之前已经执行了。 如果布尔表达式的值为 true,则语句块一直执行,直到布尔表达式的值为 false。

PS:while(条件) 后一定要记得加;

实例:

1
2
3
4
5
6
7
8
9
10
public class Test{
public static void main(String[] args){
int x;
x = 15;
do{
System.out.println("x = " + x);
x++;
}while(x<20); //while(条件)后记得加;
}
}

以上实例编译运行结果:

for循环

for循环执行的次数是在执行前就确定的。语法格式如下:

1
2
3
for(初始化; 布尔表达式; 更新) {
//代码语句
}

关于 for 循环有以下几点说明:

  • 最先执行初始化步骤。可以声明一种类型,但可初始化一个或多个循环控制变量,也可以是空语句。
  • 然后,检测布尔表达式的值。如果为 true,循环体被执行。如果为false,循环终止,开始执行循环体后面的语句。
  • 执行一次循环后,更新循环控制变量。
  • 再次检测布尔表达式。循环执行上面的过程。

实例:

1
2
3
4
5
6
7
public class Test{
public static void main(String[] args){
for(int x = 15; x < 20; x++){
System.out.println("x = " + x);
}
}
}

实例编译运行结果如下:

Java 增强 for 循环

Java5 引入了一种主要用于数组的增强型 for 循环。

Java 增强 for 循环语法格式如下:

1
2
3
4
for(声明语句 : 表达式)
{
//代码句子
}

声明语句:声明新的局部变量,该变量的类型必须和数组元素的类型匹配。其作用域限定在循环语句块,其值与此时数组元素的值相等。

表达式:表达式是要访问的数组名,或者是返回值为数组的方法。

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Test{
public static void main(String[] args){
int [] num = {1, 2, 3, 4, 5};

for(int x : num){
System.out.print(x);
System.out.print(",");
}

System.out.println();
String [] names = {"edward", "sigma", "S1gma0","si9ma0v0"};

for(String name : names){
System.out.print(name);
System.out.print(",");
}
}
}

实例编译运行结果如下:

break 关键字

break 主要用在循环语句或者 switch 语句中,用来跳出整个语句块。

break 跳出最里层的循环,并且继续执行该循环下面的语句。

语法:

1
break;

实例:

1
2
3
4
5
6
7
8
9
10
11
public class Test{
public static void main(String[] args){
int [] num = {1,2,3,4,5};
for(int x : num){
if(x == 3){
break;
}
System.out.println(x);
}
}
}

实例编译运行结果如下:

continue 关键字

continue 适用于任何循环控制结构中。作用是让程序立刻跳转到下一次循环的迭代。

在 for 循环中,continue 语句使程序立即跳转到更新语句。

在 while 或者 do…while 循环中,程序立即跳转到布尔表达式的判断语句。

1
continue;

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Test {
public static void main(String[] args) {
int [] numbers = {10, 20, 30, 40, 50};

for(int x : numbers ) {
if( x == 30 ) {
continue;
}
System.out.print( x );
System.out.print("\n");
}
}
}

实例编译运行结果:

条件语句

Java 中的条件语句允许程序根据条件的不同执行不同的代码块。

if

if语句语法如下:

1
2
3
4
if(布尔表达式)
{
//如果布尔表达式为true将执行的语句
}

实例:

1
2
3
4
5
6
7
8
public class Test{
public static void main(String[] args){
int x = 10;
if(x%2 == 0){
System.out.println(x + "可以被2整除");
}
}
}

该实例编译运行的结果为:

if…else

if…else的语法:

1
2
3
4
5
if(布尔表达式){
//如果布尔表达式的值为true
}else{
//如果布尔表达式的值为false
}

if…else if…else 语句

if 语句后面可以跟 else if…else 语句,这种语句可以检测到多种可能的情况。

使用 if,else if,else 语句的时候,需要注意下面几点:

  • if 语句至多有 1 个 else 语句,else 语句在所有的 else if 语句之后。
  • if 语句可以有若干个 else if 语句,它们必须在 else 语句之前。
  • 一旦其中一个 else if 语句检测为 true,其他的 else if 以及 else 语句都将跳过执行

if…else if…else的语法:

1
2
3
4
5
6
7
8
9
if(布尔表达式 1){
//如果布尔表达式 1的值为true执行代码
}else if(布尔表达式 2){
//如果布尔表达式 2的值为true执行代码
}else if(布尔表达式 3){
//如果布尔表达式 3的值为true执行代码
}else {
//如果以上布尔表达式都不为true执行代码
}

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Test {
public static void main(String args[]){
int x = 30;

if( x == 10 ){
System.out.print("Value of X is 10");
}else if( x == 20 ){
System.out.print("Value of X is 20");
}else if( x == 30 ){
System.out.print("Value of X is 30");
}else{
System.out.print("这是 else 语句");
}
}
}

嵌套的 if…else 语句

使用嵌套的 if…else 语句是合法的。也就是说你可以在另一个 if 或者 else if 语句中使用 if 或者 else if 语句。

嵌套的 if…else 语法格式如下:

1
2
3
4
5
6
if(布尔表达式 1){
////如果布尔表达式 1的值为true执行代码
if(布尔表达式 2){
////如果布尔表达式 2的值为true执行代码
}
}

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Test {

public static void main(String args[]){
int x = 30;
int y = 10;

if( x == 30 ){
if( y == 10 ){
System.out.print("X = 30 and Y = 10");
}
}
}
}

switch case

switch case 语句判断一个变量与一系列值中某个值是否相等,每个值称为一个分支。

switch case语句的语法格式:

1
2
3
4
5
6
7
8
9
10
11
switch(expression){
case value :
//语句
break; //可选
case value :
//语句
break; //可选
//你可以有任意数量的case语句
default : //可选
//语句
}

switch case 执行时,一定会先进行匹配,匹配成功返回当前 case 的值,再根据是否有 break,判断是否继续输出,或是跳出判断。

switch case 语句有如下规则:

  • switch 语句中的变量类型可以是: byte、short、int 或者 char。从 Java SE 7 开始,switch 支持字符串 String 类型了,同时 case 标签必须为字符串常量或字面量。
  • switch 语句可以拥有多个 case 语句。每个 case 后面跟一个要比较的值和冒号
  • case 语句中的值的数据类型必须与变量的数据类型相同,而且只能是常量或者字面常量。
  • 当变量的值与 case 语句的值相等时,那么 case 语句之后的语句开始执行,直到 break 语句出现才会跳出 switch 语句。
  • 当遇到 break 语句时,switch 语句终止。程序跳转到 switch 语句后面的语句执行。case 语句不必须要包含 break 语句。如果没有 break 语句出现,程序会继续执行下一条 case 语句,直到出现 break 语句。
  • switch 语句可以包含一个 default 分支,该分支一般是 switch 语句的最后一个分支(可以在任何位置,但建议在最后一个)。default 在没有 case 语句的值和变量值相等的时候执行。default 分支不需要 break 语句。

实例A:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class Test{
public static void main(String[] args){
char grade;
grade = 'B';
System.out.print(grade + "等级属于");
switch(grade){
case 'A' :
System.out.println("优秀");
break;
case 'B' :
System.out.println("良好");
break;
case 'C' :
System.out.println("需要努力了啊!");
default:
System.out.println("未知等级");
}
}
}

编译运行结果如下:

实例B

如果当前匹配成功的 case 语句块没有 break 语句,则从当前 case 开始,后续所有 case 的值都会输出,如果后续的 case 语句块有 break 语句则会跳出判断。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Test {
public static void main(String args[]){
int i = 1;
switch(i){
case 0:
System.out.println("0");
case 1:
System.out.println("1");
case 2:
System.out.println("2");
default:
System.out.println("default");
}
}
}

编译运行结果如下:

数组

声明数组变量

首先必须声明数组变量,才能在程序中使用数组。下面是声明数组变量的语法:

1
2
3
4
5
dataType[] arrayRefVar;   // 首选的方法



dataType arrayRefVar[]; // 效果相同,但不是首选方法

注意: 建议使用 dataType[] arrayRefVar 的声明风格声明数组变量。 dataType arrayRefVar[] 风格是来自 C/C++ 语言 ,在Java中采用是为了让 C/C++ 程序员能够快速理解java语言。

例如:

1
2
3
4
5
double[] myList;         // 首选的方法



double myList[]; // 效果相同,但不是首选方法

创建数组

使用new操作符来创建数组,语法如下:

1
arrayRefVar = new dataType[arraySize];

上面的语法语句做了两件事:

  • 一、使用 dataType[arraySize] 创建了一个数组。
  • 二、把新创建的数组的引用赋值给变量 arrayRefVar。

数组变量的声明,和创建数组可以用一条语句完成,如下所示:

1
2
3
dataType[] arrayRefVar = new dataType[arraySize];

dataType[] arrayRefVar = {value0, value1, ..., valuek};

注意:数组的元素是通过索引访问的。数组索引从 0 开始,所以索引值从 0 到 arrayRefVar.length-1。

实例A:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class Test{
public static void main(String[] args){
int sum = 0;
int arraySize = 5 ;
int[] arr; //声明数组
arr = new int[arraySize]; //创建数组 4,5也可写作int[] arr = new int[arraySize];
arr[0] = 72;
arr[1] = 28; //直接给数组赋值
for(int i = 2; i < arraySize; i++){ //通过for循环给数组赋值
arr[i] = 10;
}
System.out.print("数组元素为:");
for(int i = 0; i < arraySize; i++ ){
System.out.print(arr[i]);
System.out.print(" ");
}
System.out.println();
for(int i = 0; i < arraySize; i++ ){
sum += arr[i];
}
System.out.println("该数组所有元素之和为:" + sum);
}
}

编译运行结果为:

实例B

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class Test{
public static void main(String[] args){
double[] myList = {2.3, 1.7, 1.6, 3.5};

//输出myList数组
System.out.print("该数组中的元素有:");
for(int i = 0; i < myList.length; i++){
System.out.print(myList[i] + " ");
}
System.out.println();

//查找最大值——令第一个数组元素为默认的max,向后挨个比较大小。
double max = myList[0];
for(int i = 1; i < myList.length; i++){
if(max < myList[i]) max = myList[i];
}
System.out.println("该数组中最大值为:" + max);
}
}

编译运行结果为:

For-Each 循环

JDK 1.5 引进了一种新的循环类型,被称为 For-Each 循环或者加强型循环,它能在不使用下标的情况下遍历数组。

语法格式如下:

1
2
3
4
for(type element: array)
{
System.out.println(element);
}

**PS:**注意输出的格式是(element)

实例

1
2
3
4
5
6
7
8
9
public class Test{
public static void main(String[] args){
double[] myList = {2.3, 1.7, 1.6, 3.5};

for(double element: myList){
System.out.println(element);
}
}
}

编译运行结果如下:

数组作为函数的参数

数组可以作为参数传递给方法。

例如,下面的例子就是一个打印 int 数组中元素的方法:

1
2
3
4
5
public static void printArray(int[] array) {
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
}

下面例子调用 printArray 方法打印出 3,1,2,6,4 和 2:

1
printArray(new int[]{3, 1, 2, 6, 4, 2});

数组作为函数的返回值

1
2
3
4
5
6
7
8
public static int[] reverse(int[] list) {
int[] result = new int[list.length];

for (int i = 0, j = result.length - 1; i < list.length; i++, j--) {
result[j] = list[i];
}
return result;
}

其中 result 数组作为函数的返回值。

多维数组

多维数组可以看成是数组的数组,比如二维数组就是一个特殊的一维数组,其每一个元素都是一个一维数组,例如:

1
String[][] str = new String[3][4];

多维数组的动态初始化(以二维数组为例)

  1. 直接为每一维分配空间,格式如下:
1
2
type[][] typeName = new type[typeLength1][typeLength2];
//行 列

type 可以为基本数据类型和复合数据类型,typeLength1 和 typeLength2 必须为正整数,typeLength1 为行数,typeLength2 为列数。

例如:

1
int[][] a = new int[2][3];    //两行三列。
  1. 从最高维开始,分别为每一维分配空间,例如:
1
2
3
4
5
6
7
8
String[][] s = new String[2][];
s[0] = new String[2]; //s的第一行的列数为2
s[1] = new String[3]; //s的第二行的列数为3
s[0][0] = new String("Good");
s[0][1] = new String("Luck");
s[1][0] = new String("to");
s[1][1] = new String("you");
s[1][2] = new String("!");

解析:

s[0]=new String[2]s[1]=new String[3] 是为最高维分配引用空间,也就是为最高维限制其能保存数据的最长的长度,然后再为其每个数组元素单独分配空间 s0=new String(“Good”) 等操作。

多维数组的引用(以二维数组为例)

对二维数组中的每个元素,引用方式为 arrayName[index1][index2],例如:

1
num[1][0];

Arrays 类

java.util.Arrays 类能方便地操作数组,它提供的所有方法都是静态的。

具有以下功能:

  • 给数组赋值:通过 fill 方法。
  • 对数组排序:通过 sort 方法,按升序。
  • 比较数组:通过 equals 方法比较数组中元素值是否相等。
  • 查找数组元素:通过 binarySearch 方法能对排序好的数组进行二分查找法操作。
序号 方法和说明
1 public static int binarySearch(Object[] a, Object key) 用二分查找算法在给定数组中搜索给定值的对象(Byte,Int,double等)。数组在调用前必须排序好的。如果查找值包含在数组中,则返回搜索键的索引;否则返回 (-(插入点) - 1)。
2 public static boolean equals(long[] a, long[] a2) 如果两个指定的 long 型数组彼此相等,则返回 true。如果两个数组包含相同数量的元素,并且两个数组中的所有相应元素对都是相等的,则认为这两个数组是相等的。换句话说,如果两个数组以相同顺序包含相同的元素,则两个数组是相等的。同样的方法适用于所有的其他基本数据类型(Byte,short,Int等)。
3 public static void fill(int[] a, int val) 将指定的 int 值分配给指定 int 型数组指定范围中的每个元素。同样的方法适用于所有的其他基本数据类型(Byte,short,Int等)。
4 public static void sort(Object[] a) 对指定对象数组根据其元素的自然顺序进行升序排列。同样的方法适用于所有的其他基本数据类型(Byte,short,Int等)。

方法

Java方法是语句的集合,它们在一起执行一个功能。

  • 方法是解决一类问题的步骤的有序组合
  • 方法包含于类或对象中
  • 方法在程序中被创建,在其他地方被引用

方法的优点

    1. 使程序变得更简短而清晰。
    1. 有利于程序维护。
    1. 可以提高程序开发的效率。
    1. 提高了代码的重用性。

方法的命名规则

  • 1.方法的名字的第一个单词应以小写字母作为开头,后面的单词则用大写字母开头写,不使用连接符。例如:addPerson
  • 2.下划线_可能出现在 JUnit 测试方法名称中用以分隔名称的逻辑组件。一个典型的模式是:test<MethodUnderTest>_<state>,例如 testPop_emptyStack

方法的定义

一般情况下,定义一个方法包含以下语法:

1
2
3
4
5
6
修饰符 返回值类型 方法名(参数类型 参数名){
...
方法体
...
return 返回值;
}

方法包含一个方法头和一个方法体。下面是一个方法的所有部分:

  • 修饰符:修饰符,这是可选的,告诉编译器如何调用该方法。定义了该方法的访问类型。如:default, public , protected, private, final, abstract, static, synchronized
  • 返回值类型 :方法可能会返回值。returnValueType 是方法返回值的数据类型。有些方法执行所需的操作,但没有返回值。在这种情况下,returnValueType 是关键字void
  • 方法名:是方法的实际名称。方法名和参数表共同构成方法签名。
  • 参数类型:参数像是一个占位符。当方法被调用时,传递值给参数。这个值被称为实参或变量。参数列表是指方法的参数类型、顺序和参数的个数。参数是可选的,方法可以不包含任何参数。
  • 方法体:方法体包含具体的语句,定义该方法的功能。

注意: 在一些其它语言中方法指过程和函数。一个返回非void类型返回值的方法称为函数;一个返回void类型返回值的方法叫做过程。

方法调用

Java 支持两种调用方法的方式,根据方法是否返回值来选择。

当程序调用一个方法时,程序的控制权交给了被调用的方法。当被调用方法的返回语句执行或者到达方法体闭括号时候交还控制权给程序。

当方法返回一个值的时候,方法调用通常被当做一个值。例如:

1
int larger = max(30, 40);

如果方法返回值是void,方法调用一定是一条语句。例如,方法println返回void。下面的调用是个语句:

1
System.out.println("欢迎访问Sigma的博客!");

实例:

下面的例子演示了如何定义一个方法,以及如何调用它。

这个程序包含 main 方法和 max 方法。main 方法是被 JVM 调用的,除此之外,main 方法和其它方法没什么区别。

main 方法的头部是不变的,如例子所示,带修饰符 public 和 static,返回 void 类型值,方法名字是 main,此外带个一个 String[] 类型参数。String[] 表明参数是字符串数组。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Test{
/** 主方法 */
public static void main(String[] args){
int number1 = 17;
int number2 = 65;
int maximum = max(number1, number2);
System.out.println(number1 + "和" + number2 + "相比较," + maximum + "更大");
}

/** 返回两个整数变量较大的值 */
public static int max(int num1, int num2){
return num1 > num2 ? num1 : num2;
}
}

编译运行结果如下:

方法的重载

上面使用的max方法仅仅适用于int型数据。但如果要得到两个浮点类型数据的最大值呢?

解决方法是创建另一个有相同名字但参数不同的方法,如下面代码所示:

1
2
3
public static double max(double num1, double num2){
return num1 > num2 ? num1 : num2;
}

如果你调用max方法时传递的是int型参数,则 int型参数的max方法就会被调用;

如果传递的是double型参数,则double类型的max方法体会被调用,这叫做方法重载;

就是说一个类的两个方法拥有相同的名字,但是有不同的参数列表

Java编译器根据方法签名判断哪个方法应该被调用。

方法重载可以让程序更清晰易读。执行密切相关任务的方法应该使用相同的名字。

重载的方法必须拥有不同的参数列表。不能仅仅依据修饰符或者返回类型的不同来重载方法。

void 关键字

下面的例子声明了一个名为 printGrade 的方法,并且调用它来打印给定的分数。

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Test{
public static void main(String[] args) {
printGrade(78.5);
}

public static void printGrade(double score) {
if (score >= 90.0) System.out.println('A');
else if (score >= 80.0) System.out.println('B');
else if (score >= 70.0) System.out.println('C');
else if (score >= 60.0) System.out.println('D');
else System.out.println('F');
}
}

这里printGrade方法是一个void类型方法,它不返回值。

一个void方法的调用一定是一个语句。 所以,它被在main方法第三行以语句形式调用。就像任何以分号结束的语句一样。

编译运行结果:

通过值传递参数

调用一个方法时候需要提供参数,你必须按照参数列表指定的顺序提供。

实例:

该程序创建一个方法,该方法用于交换两个变量。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class TestPassByValue {
public static void main(String[] args){
int number1 = 10;
int number2 = 24;
System.out.println("交换前number1是" + number1 + ",number2是" + number2);
swap(number1, number2);
System.out.println("交换后number1是" + number1 + ",number2是" + number2);
}

public static void swap(int num1, int num2){
System.out.println("\t在swap中,交换前num1:" + num1 + ",num2是:" + num2);
int temp;
temp = num1;
num1 = num2;
num2 = temp;
System.out.print("\t在swap中,交换后");
System.out.print("num1:" + num1);
System.out.println("num2:" + num2);
}
}

实例编译运行结果如下:

传递两个参数调用swap方法。有趣的是,方法被调用后,实参的值并没有改变。

变量作用域

  • 变量的范围是程序中该变量可以被引用的部分。
  • 方法内定义的变量被称为局部变量。
  • 局部变量的作用范围从声明开始,直到包含它的块结束。
  • 局部变量必须声明才可以使用。
  • 方法的参数范围涵盖整个方法。参数实际上是一个局部变量。
  • for循环的初始化部分声明的变量,其作用范围在整个循环。
  • 但循环体内声明的变量其适用范围是从它声明到循环体结束。它包含如下所示的变量声明:

可以在一个方法里,不同的非嵌套块中多次声明一个具有相同的名称局部变量,但不能在嵌套块内两次声明局部变量。

命令行参数的使用

有时候你希望运行一个程序时候再传递给它消息。这要靠传递命令行参数给main()函数实现。

命令行参数是在执行程序时候紧跟在程序名字后面的信息。

1
2
3
4
5
6
7
public class CommandLine{
public static void main(String[] args){
for(int i = 0;i < args.length;i++){
System.out.println("args[" + i + "]:" + args[i]);
}
}
}

运行结果如下:

构造方法

当一个对象被创建时候,构造方法用来初始化该对象。构造方法和它所在类的名字相同,但构造方法没有返回值

通常会使用构造方法给一个类的实例变量赋初值,或者执行其它必要的步骤来创建一个完整的对象。

不管你是否自定义构造方法,所有的类都有构造方法,因为 Java 自动提供了一个默认构造方法,默认构造方法的访问修饰符和类的访问修饰符相同(类为 public,构造函数也为 public;类改为 protected,构造函数也改为 protected)。

一旦你定义了自己的构造方法,默认构造方法就会失效。

实例

1
2
3
4
5
6
7
8
9
// 一个简单的构造方法
class MyClass {
int x;

// 以下是构造方法
MyClass() {
x = 10;
}
}

可以像下面这样调用构造方法来初始化一个对象:

1
2
3
4
5
6
7
public class ConsDemo {
public static void main(String[] args) {
MyClass t1 = new MyClass( 10 );
MyClass t2 = new MyClass( 20 );
System.out.println(t1.x + " " + t2.x);
}
}

可变参数

JDK 1.5 开始,Java支持传递同类型的可变参数给一个方法。

方法的可变参数的声明如下所示:

1
typeName... parameterName

在方法声明中,在指定参数类型后加一个省略号...

一个方法中只能指定一个可变参数,它必须是方法的最后一个参数。任何普通的参数必须在它之前声明。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class VarargsDemo {
public static void main(String[] args) {
// 调用可变参数的方法
printMax(34, 3, 3, 2, 56.5);
printMax(new double[]{1, 2, 3});
printMax();
}

public static void printMax( double... numbers) {
if (numbers.length == 0) { //没传参数
System.out.println("No argument passed");
return;
}

double result = numbers[0];

for (int i = 1; i < numbers.length; i++){ //找最大值。
if (numbers[i] > result) {
result = numbers[i];
}
}
System.out.println("The max value is " + result);
}
}

编译运行结果为:

日期时间

java.util 包提供了 Date 类来封装当前的日期和时间。 Date 类提供两个构造函数来实例化 Date 对象。

第一个构造函数使用当前日期和时间来初始化对象。

1
Date()

第二个构造函数接收一个参数,该参数是从 1970 年 1 月 1 日起的毫秒数。

1
Date(long millisec)

Date 对象创建以后,可以调用下面的方法。

序号 方法和描述
1 boolean after(Date date) 若当调用此方法的Date对象在指定日期之后返回true,否则返回false。
2 boolean before(Date date) 若当调用此方法的Date对象在指定日期之前返回true,否则返回false。
3 Object clone( ) 返回此对象的副本。
4 int compareTo(Date date) 比较当调用此方法的Date对象和指定日期。两者相等时候返回0。调用对象在指定日期之前则返回负数。调用对象在指定日期之后则返回正数。
5 int compareTo(Object obj) 若obj是Date类型则操作等同于compareTo(Date) 。否则它抛出ClassCastException。
6 boolean equals(Object date) 当调用此方法的Date对象和指定日期相等时候返回true,否则返回false。
7 long getTime( ) 返回自 1970 年 1 月 1 日 00:00:00 GMT 以来此 Date 对象表示的毫秒数。
8 int hashCode( ) 返回此对象的哈希码值。
9 void setTime(long time) 用自1970年1月1日00:00:00 GMT以后time毫秒数设置时间和日期。
10 String toString( ) 把此 Date 对象转换为以下形式的 String: dow mon dd hh:mm:ss zzz yyyy 其中: dow 是一周中的某一天 (Sun, Mon, Tue, Wed, Thu, Fri, Sat)。

获取当前日期时间

Java中获取当前日期和时间很简单,使用 Date 对象的 toString() 方法来打印当前日期和时间,如下所示:

1
2
3
4
5
6
7
import java.util.Date;
public class DateDemo{
public static void main(String[] args){
Date date = new Date();
System.out.println(date.toString());
}
}

编译运行结果如下:

日期比较

Java使用以下三种方法来比较两个日期:

  • 使用getTime()方法获取两个日期(自1970年1月1日经历的毫秒数值),然后比较这两个值。
  • 使用方法before()after()equals()。例如,一个月的12号比18号早,则 new Date(99, 2, 12).before(new Date (99, 2, 18)) 返回true。
  • 使用compareTo()方法,它是由 Comparable 接口定义的,Date 类实现了这个接口。

使用 SimpleDateFormat 格式化日期

SimpleDateFormat是一个以语言环境敏感的方式来格式化和分析日期的类。SimpleDateFormat允许你选择任何用户自定义日期时间格式来运行。例如:

1
2
3
4
5
6
7
8
9
import java.util.*;
import java.text.*;
public class DateDemo{
public static void main(String[] args){
Date dateNow = new Date();
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss"); // yyyy 是完整的公元年,MM 是月份,dd 是日期,HH:mm:ss 是时、分、秒。
System.out.println("当前时间:" + format.format(dateNow));
}
}

编译运行结果为:

注意:有的格式大写,有的格式小写,例如 MM 是月份,mm 是分;HH 是 24 小时制,而 hh 是 12 小时制。

日期和时间的格式化编码

时间模式字符串用来指定时间格式。在此模式中,所有的 ASCII 字母被保留为模式字母,定义如下:

字母 描述 示例
G 纪元标记 AD
y 四位年份 2001
M 月份 July or 07
d 一个月的日期 10
h A.M./P.M. (1~12)格式小时 12
H 一天中的小时 (0~23) 22
m 分钟数 30
s 秒数 55
S 毫秒数 234
E 星期几 Tuesday
D 一年中的日子 360
F 一个月中第几周的周几 2 (second Wed. in July)
w 一年中第几周 40
W 一个月中第几周 1
a A.M./P.M. 标记 PM
k 一天中的小时(1~24) 24
K A.M./P.M. (0~11)格式小时 10
z 时区 Eastern Standard Time
文字定界符 Delimiter
单引号 `

使用printf格式化日期

printf 方法可以很轻松地格式化时间和日期。使用两个字母格式,它以 %t 开头并且以下面表格中的一个字母结尾。

  • %tY:输出四位数的年份,例如:2023
  • %ty:输出两位数的年份,例如:23
  • %tm:输出两位数的月份,例如:02
  • %tB:输出月份的全名,例如:February
  • %tb:输出月份的缩写,例如:Feb
  • %tA:输出星期的全名,例如:Wednesday
  • %ta:输出星期的缩写,例如:Wed
  • %td:输出两位数的日期,例如:24
  • %te:输出一位或两位数的日期,例如:24 或 02
  • %tH:输出24小时制的小时数,例如:23
  • %tI:输出12小时制的小时数,例如:11
  • %tM:输出分钟数,例如:45
  • %tS:输出秒数,例如:30
  • %tp:输出上午还是下午,例如:AM 或 PM
  • %tZ:输出时区,例如:GMT+08:00
转换符 说明 示例
%tc 包括全部日期和时间信息 星期六 十月 27 14:21:20 CST 2007
%tF “年-月-日”格式 2007-10-27
%tD “月/日/年”格式 10/27/07
%tr “HH:MM:SS PM”格式(12时制) 02:25:51 下午
%tT “HH:MM:SS”格式(24时制) 14:28:16
%tR “HH:MM”格式(24时制) 14:28

实例A

1
2
3
4
5
6
7
import java.util.Date;
public class DateDemo{
public static void main(String[] args) {
Date date = new Date();
System.out.printf("%tY-%tm-%td %tH:%tM:%tS %tZ", date, date, date, date, date, date, date);
}
}

编译运行结果为:

注意:菜鸟教程的这个实例的第五行代码缺少一个date。

案例B

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import java.util.Date;

public class DateDemo {

public static void main(String[] args) {
// 初始化 Date 对象
Date date = new Date();

//c的使用
System.out.printf("全部日期和时间信息:%tc%n",date);
//f的使用
System.out.printf("年-月-日格式:%tF%n",date);
//d的使用
System.out.printf("月/日/年格式:%tD%n",date);
//r的使用
System.out.printf("HH:MM:SS PM格式(12时制):%tr%n",date);
//t的使用
System.out.printf("HH:MM:SS格式(24时制):%tT%n",date);
//R的使用
System.out.printf("HH:MM格式(24时制):%tR",date);
}
}

编译运行结果为:

如果你需要重复提供日期,那么利用这种方式来格式化它的每一部分就有点复杂了。因此,可以利用一个格式化字符串指出要被格式化的参数的索引。

索引必须紧跟在 % 后面,而且必须以 $ 结束。例如:

1
2
3
4
5
6
7
import java.util.Date;
public class DateDemo{
public static void main(String[] args){
Date date = new Date();
System.out.printf("%1$s %2$tB %2$td, %2$tY","Due date:",date);
}
}

编译运行结果如下:

或者,你可以使用 < 标志。它表明先前被格式化的参数要被再次使用。例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
import java.util.Date;

public class DateDemo {

public static void main(String[] args) {
// 初始化 Date 对象
Date date = new Date();

// 显示格式化时间
System.out.printf("%s %tB %<te, %<tY",
"Due date:", date);
}
}

编译运行结果如下:

定义日期格式的转换符可以使日期通过指定的转换符生成新字符串。这些日期转换符如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import java.util.*;

public class DateDemo {
public static void main(String[] args) {
Date date=new Date();
//b的使用,月份简称
String str=String.format(Locale.US,"英文月份简称:%tb",date);
System.out.println(str);
System.out.printf("本地月份简称:%tb%n",date);
//B的使用,月份全称
str=String.format(Locale.US,"英文月份全称:%tB",date);
System.out.println(str);
System.out.printf("本地月份全称:%tB%n",date);
//a的使用,星期简称
str=String.format(Locale.US,"英文星期的简称:%ta",date);
System.out.println(str);
//A的使用,星期全称
System.out.printf("本地星期的简称:%tA%n",date);
//C的使用,年前两位
System.out.printf("年的前两位数字(不足两位前面补0):%tC%n",date);
//y的使用,年后两位
System.out.printf("年的后两位数字(不足两位前面补0):%ty%n",date);
//j的使用,一年的天数
System.out.printf("一年中的天数(即年的第几天):%tj%n",date);
//m的使用,月份
System.out.printf("两位数字的月份(不足两位前面补0):%tm%n",date);
//d的使用,日(二位,不够补零)
System.out.printf("两位数字的日(不足两位前面补0):%td%n",date);
//e的使用,日(一位不补零)
System.out.printf("月份的日(前面不补0):%te",date);
}
}

编译运行结果为:

解析字符串为时间

正则表达式

正则表达式定义了字符串的模式。

正则表达式可以用来搜索、编辑或处理文本。

正则表达式并不仅限于某一种语言,但是在每种语言中有细微的差别。

实例

一个字符串其实就是一个简单的正则表达式,例如 Hello World 正则表达式匹配 “Hello World” 字符串。

.(点号)也是一个正则表达式,它匹配任何一个字符如:”a” 或 “1”。

下表列出了一些正则表达式的实例及描述:

正则表达式 描述
this is text 匹配字符串 “this is text”
this\s+is\s+text 注意字符串中的 \s+ 匹配单词 “this” 后面的 \s+ 可以匹配多个空格,之后匹配 is 字符串,再之后 \s+ 匹配多个空格然后再跟上 text 字符串。 可以匹配这个实例:this is text
^\d+(.\d+)? ^ 定义了以什么开始 \d+ 匹配一个或多个数字 ? 设置括号内的选项是可选的 . 匹配 “.” 可以匹配的实例:”5”, “1.5” 和 “2.21”。

java.util.regex 包主要包括以下三个类:

  • Pattern 类:

    pattern 对象是一个正则表达式的编译表示。Pattern 类没有公共构造方法。要创建一个 Pattern 对象,你必须首先调用其公共静态编译方法,它返回一个 Pattern 对象。该方法接受一个正则表达式作为它的第一个参数。

  • Matcher 类:

    Matcher 对象是对输入字符串进行解释和匹配操作的引擎。与Pattern 类一样,Matcher 也没有公共构造方法。你需要调用 Pattern 对象的 matcher 方法来获得一个 Matcher 对象。

  • PatternSyntaxException:

    PatternSyntaxException 是一个非强制异常类,它表示一个正则表达式模式中的语法错误。

实例:

以下实例中使用了正则表达式 .*blog.* 用于查找字符串中是否包了 blog 子串:

1
2
3
4
5
6
7
8
9
import java.util.regex.*;
public class Test{
public static void main(String[] args){
String content = "This is my blog" + "S1gma's blog";
String pattern = ".*blog.*";
boolean isMatch = Pattern.matches(pattern,content);
System.out.println("字符串中是否包含了 'blog' 子字符串?" + "\n" + isMatch);
}
}

编译运行结果为:

正则表达式语法

在其他语言中,\\ 表示:我想要在正则表达式中插入一个普通的(字面上的)反斜杠,请不要给它任何特殊的意义。

在 Java 中,\\ 表示:我要插入一个正则表达式的反斜线,所以其后的字符具有特殊的意义

所以,在其他的语言中(如 Perl),一个反斜杠 \ 就足以具有转义的作用,而在 Java 中正则表达式中则需要有两个反斜杠才能被解析为其他语言中的转义作用。也可以简单的理解*在 Java 的正则表达式中,两个 \\ 代表其他语言中的一个 \,这也就是为什么表示一位数字的正则表达式是 \\d,而表示一个普通的反斜杠是 \\

1
2
System.out.print("\\");    // 输出为 \
System.out.print("\\\\"); // 输出为 \\
字符 说明
\ 将下一字符标记为特殊字符、文本、反向引用或八进制转义符。例如, n匹配字符 n\n 匹配换行符。序列 \\** 匹配 *\*\(** 匹配 **(**。
^ 匹配输入字符串开始的位置。如果设置了 RegExp 对象的 Multiline 属性,^ 还会与”\n”或”\r”之后的位置匹配。
$ 匹配输入字符串结尾的位置。如果设置了 RegExp 对象的 Multiline 属性,$ 还会与”\n”或”\r”之前的位置匹配。
* 零次或多次匹配前面的字符或子表达式。例如,zo* 匹配”z”和”zoo”。* 等效于 {0,}。
+ 一次或多次匹配前面的字符或子表达式。例如,”zo+”与”zo”和”zoo”匹配,但与”z”不匹配。+ 等效于 {1,}。
? 零次或一次匹配前面的字符或子表达式。例如,”do(es)?”匹配”do”或”does”中的”do”。? 等效于 {0,1}。
{n} n 是非负整数。正好匹配 n 次。例如,”o{2}”与”Bob”中的”o”不匹配,但与”food”中的两个”o”匹配。
{n,} n 是非负整数。至少匹配 n 次。例如,”o{2,}”不匹配”Bob”中的”o”,而匹配”foooood”中的所有 o。”o{1,}”等效于”o+”。”o{0,}”等效于”o*”。
{n,m} mn 是非负整数,其中 n <= m。匹配至少 n 次,至多 m 次。例如,”o{1,3}”匹配”fooooood”中的头三个 o。’o{0,1}’ 等效于 ‘o?’。注意:您不能将空格插入逗号和数字之间。
? 当此字符紧随任何其他限定符(*、+、?、{n}、{n,}、{n,m})之后时,匹配模式是”非贪心的”。”非贪心的”模式匹配搜索到的、尽可能短的字符串,而默认的”贪心的”模式匹配搜索到的、尽可能长的字符串。例如,在字符串”oooo”中,”o+?”只匹配单个”o”,而”o+”匹配所有”o”。
. 匹配除”\r\n”之外的任何单个字符。若要匹配包括”\r\n”在内的任意字符,请使用诸如”[\s\S]”之类的模式。
(pattern) 匹配 pattern 并捕获该匹配的子表达式。可以使用 $0…$9 属性从结果”匹配”集合中检索捕获的匹配。若要匹配括号字符 ( ),请使用”(“或者”)“。
(?:pattern) 匹配 pattern 但不捕获该匹配的子表达式,即它是一个非捕获匹配,不存储供以后使用的匹配。这对于用”or”字符 (|) 组合模式部件的情况很有用。例如,’industr(?:y|ies) 是比 ‘industry|industries’ 更经济的表达式。
(?=pattern) 执行正向预测先行搜索的子表达式,该表达式匹配处于匹配 pattern 的字符串的起始点的字符串。它是一个非捕获匹配,即不能捕获供以后使用的匹配。例如,’Windows (?=95|98|NT|2000)’ 匹配”Windows 2000”中的”Windows”,但不匹配”Windows 3.1”中的”Windows”。预测先行不占用字符,即发生匹配后,下一匹配的搜索紧随上一匹配之后,而不是在组成预测先行的字符后。
(?!pattern) 执行反向预测先行搜索的子表达式,该表达式匹配不处于匹配 pattern 的字符串的起始点的搜索字符串。它是一个非捕获匹配,即不能捕获供以后使用的匹配。例如,’Windows (?!95|98|NT|2000)’ 匹配”Windows 3.1”中的 “Windows”,但不匹配”Windows 2000”中的”Windows”。预测先行不占用字符,即发生匹配后,下一匹配的搜索紧随上一匹配之后,而不是在组成预测先行的字符后。
x|y 匹配 xy。例如,’z|food’ 匹配”z”或”food”。’(z|f)ood’ 匹配”zood”或”food”。
[xyz] 字符集。匹配包含的任一字符。例如,”[abc]”匹配”plain”中的”a”。
[^xyz] 反向字符集。匹配未包含的任何字符。例如,”[^abc]”匹配”plain”中”p”,”l”,”i”,”n”。
[a-z] 字符范围。匹配指定范围内的任何字符。例如,”[a-z]”匹配”a”到”z”范围内的任何小写字母。
[^a-z] 反向范围字符。匹配不在指定的范围内的任何字符。例如,”[^a-z]”匹配任何不在”a”到”z”范围内的任何字符。
\b 匹配一个字边界,即字与空格间的位置。例如,”er\b”匹配”never”中的”er”,但不匹配”verb”中的”er”。
\B 非字边界匹配。”er\B”匹配”verb”中的”er”,但不匹配”never”中的”er”。
\cx 匹配 x 指示的控制字符。例如,\cM 匹配 Control-M 或回车符。x 的值必须在 A-Z 或 a-z 之间。如果不是这样,则假定 c 就是”c”字符本身。
\d 数字字符匹配。等效于 [0-9]。
\D 非数字字符匹配。等效于 [^0-9]。
\f 换页符匹配。等效于 \x0c 和 \cL。
\n 换行符匹配。等效于 \x0a 和 \cJ。
\r 匹配一个回车符。等效于 \x0d 和 \cM。
\s 匹配任何空白字符,包括空格、制表符、换页符等。与 [ \f\n\r\t\v] 等效。
\S 匹配任何非空白字符。与 [^ \f\n\r\t\v] 等效。
\t 制表符匹配。与 \x09 和 \cI 等效。
\v 垂直制表符匹配。与 \x0b 和 \cK 等效。
\w 匹配任何字类字符,包括下划线。与”[A-Za-z0-9_]”等效。
\W 与任何非单词字符匹配。与”[^A-Za-z0-9_]”等效。
\xn 匹配 n,此处的 n 是一个十六进制转义码。十六进制转义码必须正好是两位数长。例如,”\x41”匹配”A”。”\x041”与”\x04”&”1”等效。允许在正则表达式中使用 ASCII 代码。
*num* 匹配 num,此处的 num 是一个正整数。到捕获匹配的反向引用。例如,”(.)\1”匹配两个连续的相同字符。
*n* 标识一个八进制转义码或反向引用。如果 *n* 前面至少有 n 个捕获子表达式,那么 n 是反向引用。否则,如果 n 是八进制数 (0-7),那么 n 是八进制转义码。
*nm* 标识一个八进制转义码或反向引用。如果 *nm* 前面至少有 nm 个捕获子表达式,那么 nm 是反向引用。如果 *nm* 前面至少有 n 个捕获,则 n 是反向引用,后面跟有字符 m。如果两种前面的情况都不存在,则 *nm* 匹配八进制值 nm,其中 nm 是八进制数字 (0-7)。
\nml n 是八进制数 (0-3),ml 是八进制数 (0-7) 时,匹配八进制转义码 nml
\un 匹配 n,其中 n 是以四位十六进制数表示的 Unicode 字符。例如,\u00A9 匹配版权符号 (©)。

根据 Java Language Specification 的要求,Java 源代码的字符串中的反斜线被解释为 Unicode 转义或其他字符转义。因此必须在字符串字面值中使用两个反斜线,表示正则表达式受到保护,不被 Java 字节码编译器解释。例如,当解释为正则表达式时,字符串字面值 “\b” 与单个退格字符匹配,而 “\b” 与单词边界匹配。字符串字面值 “(hello)“ 是非法的,将导致编译时错误;要与字符串 (hello) 匹配,必须使用字符串字面值 “\(hello\)”。

捕获组

捕获组是把多个字符当一个单独单元进行处理的方法,它通过对括号内的字符分组来创建。

例如,正则表达式 (dog) 创建了单一分组,组里包含”d”,”o”,和”g”。

捕获组是通过从左至右计算其开括号来编号。例如,在表达式((A)(B(C))),有四个这样的组:

  • ((A)(B(C)))
  • (A)
  • (B(C))
  • (C)

可以通过调用 matcher 对象的 groupCount 方法来查看表达式有多少个分组。groupCount 方法返回一个 int 值,表示matcher对象当前有多个捕获组。

还有一个特殊的组(group(0)),它总是代表整个表达式。该组不包括在 groupCount 的返回值中。

实例

下面的例子说明如何从一个给定的字符串中找到数字串:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches{
public static void main( String[] args ){

// 按指定模式在字符串查找
String line = "This order was placed for QT3000! OK?";
String pattern = "(\\D*)(\\d+)(.*)";

// 创建 Pattern 对象
Pattern r = Pattern.compile(pattern);

// 现在创建 matcher 对象
Matcher m = r.matcher(line);
if (m.find( )) {
System.out.println("Found value: " + m.group(0) );
System.out.println("Found value: " + m.group(1) );
System.out.println("Found value: " + m.group(2) );
System.out.println("Found value: " + m.group(3) );
} else {
System.out.println("NO MATCH");
}
}
}

编译运行结果为:

Matcher 类的方法

查找方法

查找方法用来检查输入字符串并返回一个布尔值,表示是否找到该模式:

序号 方法及说明
1 public boolean lookingAt() 尝试将从区域开头开始的输入序列与该模式匹配。
2 public boolean find() 尝试查找与该模式匹配的输入序列的下一个子序列。
3 public boolean find(int start****) 重置此匹配器,然后尝试查找匹配该模式、从指定索引开始的输入序列的下一个子序列。
4 public boolean matches() 尝试将整个区域与模式匹配。

替换方法

替换方法是替换输入字符串里文本的方法:

序号 方法及说明
1 public Matcher appendReplacement(StringBuffer sb, String replacement) 实现非终端添加和替换步骤。
2 public StringBuffer appendTail(StringBuffer sb) 实现终端添加和替换步骤。
3 public String replaceAll(String replacement) 替换模式与给定替换字符串相匹配的输入序列的每个子序列。
4 public String replaceFirst(String replacement) 替换模式与给定替换字符串匹配的输入序列的第一个子序列。
5 public static String quoteReplacement(String s) 返回指定字符串的字面替换字符串。这个方法返回一个字符串,就像传递给Matcher类的appendReplacement 方法一个字面字符串一样工作。

start 和 end 方法

下面是一个对单词 “cat” 出现在输入字符串中出现次数进行计数的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches{
private static final String REGEX = "\\bcat\\b";
private static final String INPUT = "cat cat cat cattie cat";

public static void main( String[] args ){
Pattern p = Pattern.compile(REGEX);
Matcher m = p.matcher(INPUT); // 获取 matcher 对象
int count = 0;

while(m.find()) {
count++;
System.out.println("Match number "+ count);
System.out.println("start(): "+ m.start());
System.out.println("end(): "+ m.end());
}
}
}

实例编译运行结果如下:

可以看到这个例子是使用单词边界,以确保字母 “c” “a” “t” 并非仅是一个较长的词的子串。它也提供了一些关于输入字符串中匹配发生位置的有用信息。

Start 方法返回在以前的匹配操作期间,由给定组所捕获的子序列的初始索引,end 方法最后一个匹配字符的索引加 1。

matches 和 lookingAt 方法

matches 和 lookingAt 方法都用来尝试匹配一个输入序列模式。它们的不同是 matches 要求整个序列都匹配,而lookingAt 不要求。

lookingAt 方法虽然不需要整句都匹配,但是需要从第一个字符开始匹配。

这两个方法经常在输入字符串的开始使用。

我们通过下面这个例子,来解释这个功能:

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches{
private static final String REGEX = "foo";
private static final String INPUT = "fooooooooooooooooo";
private static final String INPUT2 = "ooooofoooooooooooo";
private static Pattern pattern;
private static Matcher matcher;
private static Matcher matcher2;

public static void main(String[] args){
pattern = Pattern.compile(REGEX);
matcher = pattern.matcher(INPUT);
matcher2 = pattern.matcher(INPUT2);

System.out.println("Current REGEX is: "+REGEX);
System.out.println("Current INPUT is: "+INPUT);
System.out.println("Current INPUT2 is: "+INPUT2);

System.out.println("lookingAt(): "+matcher.lookingAt());
System.out.println("matches(): "+matcher.matches());
System.out.println("lookingAt(): "+matcher2.lookingAt());
}
}

编译运行结果:

replaceFirst 和 replaceAll 方法

replaceFirst 和 replaceAll 方法用来替换匹配正则表达式的文本。不同的是,replaceFirst 替换首次匹配,replaceAll 替换所有匹配

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches
{
private static String REGEX = "dog";
private static String INPUT = "The dog says meow. " + "All dogs say meow.";
private static String REPLACE = "cat";

public static void main(String[] args) {
Pattern p = Pattern.compile(REGEX);
// get a matcher object
Matcher m = p.matcher(INPUT);
INPUT = m.replaceAll(REPLACE);
System.out.println(INPUT);
}
}

编译运行结果如下:

appendReplacement 和 appendTail 方法

Matcher 类也提供了appendReplacement 和 appendTail 方法用于文本替换

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class RegexMatches{
private static String REGEX = "a*b";
private static String INPUT = "aabfooaabfooabfoobkkk";
private static String REPLACE = "-";

public static void main(String[] args) {
Pattern p = Pattern.compile(REGEX);
// 获取 matcher 对象
Matcher m = p.matcher(INPUT);
StringBuffer sb = new StringBuffer();
while(m.find()){
m.appendReplacement(sb,REPLACE);
}
m.appendTail(sb);
System.out.println(sb.toString());
}
}

编译运行结果如下:

PatternSyntaxException 类的方法

PatternSyntaxException 是一个非强制异常类,它指示一个正则表达式模式中的语法错误

PatternSyntaxException 类提供了下面的方法来帮助我们查看发生了什么错误。

序号 方法及说明
1 public String getDescription() 获取错误的描述。
2 public int getIndex() 获取错误的索引。
3 public String getPattern() 获取错误的正则表达式模式。
4 public String getMessage() 返回多行字符串,包含语法错误及其索引的描述、错误的正则表达式模式和模式中错误索引的可视化指示。

Character 类

Character 类用于对单个字符进行操作。

Character 类在对象中包装一个基本类型 char 的值

在实际开发过程中,我们经常会遇到需要使用对象,而不是内置数据类型的情况。为了解决这个问题,Java语言为内置数据类型char提供了包装类Character类。

Character类提供了一系列方法来操纵字符。可以使用Character的构造方法创建一个Character类对象,例如:

1
Character ch = new Character('a');

在某些情况下,Java编译器会自动创建一个Character对象。

例如,将一个char类型的参数传递给需要一个Character类型参数的方法时,那么编译器会自动地将char类型参数转换为Character对象。 这种特征称为装箱,反过来称为拆箱。

1
2
3
4
5
6
// 原始字符 'a' 装箱到 Character 对象 ch 中
Character ch = 'a';

// 原始字符 'x' 用 test 方法装箱
// 返回拆箱的值到 'c'
char c = test('x');

转义序列

前面有反斜杠\的字符代表转义字符,它对编译器来说是有特殊含义的。

下面列表展示了Java的转义序列:

转义序列 描述
\t 在文中该处插入一个tab键
\b 在文中该处插入一个后退键
\n 在文中该处换行
\r 在文中该处插入回车
\f 在文中该处插入换页符
' 在文中该处插入单引号
" 在文中该处插入双引号
\ 在文中该处插入反斜杠

当打印语句遇到一个转义序列时,编译器可以正确地对其进行解释。

以下实例转义双引号并输出:

1
2
3
4
5
public class Test{
public static void main(String[] args){
System.out.println("欢迎来到\"sigma\"的博客");
}
}

编译运行结果如下:

Character 方法

下面是Character类的方法:

序号 方法与描述
1 isLetter() 是否是一个字母
2 isDigit() 是否是一个数字字符
3 isWhitespace() 是否是一个空白字符
4 isUpperCase() 是否是大写字母
5 isLowerCase() 是否是小写字母
6 toUpperCase() 指定字母的大写形式
7 toLowerCase() 指定字母的小写形式
8 toString() 返回字符的字符串形式,字符串的长度仅为1

对于方法的完整列表,请参考的 java.lang.Character API 规范。

String 类

字符串广泛应用 在 Java 编程中,在 Java 中字符串属于对象,Java 提供了 String 类来创建和操作字符串。

创建字符串

创建字符串最简单的方式如下:

1
String str = "sigma";

在代码中遇到字符串常量时,这里的值是 sigma,编译器会使用该值创建一个 String 对象。

和其它对象一样,可以使用关键字和构造方法来创建 String 对象。

用构造函数创建字符串:

1
String str1 = new String("sigma");

String 创建的字符串存储在公共池中,而 new 创建的字符串对象在堆上

1
2
3
4
5
String str1 = "sigma";             // String 直接创建
String str2 = "sigma"; // String 直接创建
String str3 = str1; //相同引用
String str4 = new String("sigma"); //String对象创建
String str5 = new String("sigma"); //String对象创建

String 类有 11 种构造方法,这些方法提供不同的参数来初始化字符串,比如提供一个字符数组参数:

1
2
3
4
5
6
7
public class Test{
public static void main(String[] args){
char[] helloArray = {'s', 'i', 'g', 'm', 'a'};
String helloString = new String(helloArray);
System.out.println(helloString);
}
}

编译运行结果如下:

注意:String 类是不可改变的,所以你一旦创建了 String 对象,那它的值就无法改变了

如果需要对字符串做很多修改,那么应该选择使用 StringBuffer & StringBuilder 类。

字符串长度

用于获取有关对象的信息的方法称为访问器方法。

String 类的一个访问器方法是length()方法,它返回字符串对象包含的字符数

实例:

1
2
3
4
5
6
public class Test{
public static void main(String[] args){
String blog = "https://s1gma0.github.io";
System.out.println(blog + "的长度是" + blog.length());
}
}

编译运行结果如下:

连接字符串

String 类提供了连接两个字符串的方法:

1
string1.concat(string2);     //返回 string2 连接 string1 的新字符串

也可以对字符串常量使用 concat() 方法,如:

1
"我的博客:".concat.("sigma");

更常用的是使用’+’操作符来连接字符串,如:

1
"welcome " + "to" + " sigma's" + " blog"

创建格式化字符串

我们知道输出格式化数字可以使用printf()format()方法。

String 类使用静态方法format()返回一个String 对象而不是PrintStream对象。

String 类的静态方法format()能用来创建可复用的格式化字符串,而不仅仅是用于一次打印输出。

如下所示:

1
System.out.println("浮点型变量的值为 " + "%f,整型变量的值为 " + "%d,字符串变量的值为 " + "is %s", floatVar, intVar, stringVar);

也可以:

1
2
String fs;
fs = String.format("浮点型变量的值为 " + "%f, 整型变量的值为 " + " %d, 字符串变量的值为 " + " %s", floatVar, intVar, stringVar);

String 方法

下面是 String 类支持的方法,更多详细,参看 Java String API 文档:

SN(序号) 方法描述
1 char charAt(int index) 返回指定索引处的 char 值。
2 int compareTo(Object o) 把这个字符串和另一个对象比较。
3 int compareTo(String anotherString) 按字典顺序比较两个字符串。
4 int compareToIgnoreCase(String str) 按字典顺序比较两个字符串,不考虑大小写。
5 String concat(String str) 将指定字符串连接到此字符串的结尾。
6 boolean contentEquals(StringBuffer sb) 当且仅当字符串与指定的StringBuffer有相同顺序的字符时候返回真。
7 [static String copyValueOf(char] data) 返回指定数组中表示该字符序列的 String。
8 [static String copyValueOf(char] data, int offset, int count) 返回指定数组中表示该字符序列的 String。
9 boolean endsWith(String suffix) 测试此字符串是否以指定的后缀结束。
10 boolean equals(Object anObject) 将此字符串与指定的对象比较。
11 boolean equalsIgnoreCase(String anotherString) 将此 String 与另一个 String 比较,不考虑大小写。
12 [byte] getBytes() 使用平台的默认字符集将此 String 编码为 byte 序列,并将结果存储到一个新的 byte 数组中。
13 [byte] getBytes(String charsetName) 使用指定的字符集将此 String 编码为 byte 序列,并将结果存储到一个新的 byte 数组中。
14 [void getChars(int srcBegin, int srcEnd, char] dst, int dstBegin) 将字符从此字符串复制到目标字符数组。
15 int hashCode() 返回此字符串的哈希码。
16 int indexOf(int ch) 返回指定字符在此字符串中第一次出现处的索引。
17 int indexOf(int ch, int fromIndex) 返回在此字符串中第一次出现指定字符处的索引,从指定的索引开始搜索。
18 int indexOf(String str) 返回指定子字符串在此字符串中第一次出现处的索引。
19 int indexOf(String str, int fromIndex) 返回指定子字符串在此字符串中第一次出现处的索引,从指定的索引开始。
20 String intern() 返回字符串对象的规范化表示形式。
21 int lastIndexOf(int ch) 返回指定字符在此字符串中最后一次出现处的索引。
22 int lastIndexOf(int ch, int fromIndex) 返回指定字符在此字符串中最后一次出现处的索引,从指定的索引处开始进行反向搜索。
23 int lastIndexOf(String str) 返回指定子字符串在此字符串中最右边出现处的索引。
24 int lastIndexOf(String str, int fromIndex) 返回指定子字符串在此字符串中最后一次出现处的索引,从指定的索引开始反向搜索。
25 int length() 返回此字符串的长度。
26 boolean matches(String regex) 告知此字符串是否匹配给定的正则表达式。
27 boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len) 测试两个字符串区域是否相等。
28 boolean regionMatches(int toffset, String other, int ooffset, int len) 测试两个字符串区域是否相等。
29 String replace(char oldChar, char newChar) 返回一个新的字符串,它是通过用 newChar 替换此字符串中出现的所有 oldChar 得到的。
30 String replaceAll(String regex, String replacement) 使用给定的 replacement 替换此字符串所有匹配给定的正则表达式的子字符串。
31 String replaceFirst(String regex, String replacement) 使用给定的 replacement 替换此字符串匹配给定的正则表达式的第一个子字符串。
32 [String] split(String regex) 根据给定正则表达式的匹配拆分此字符串。
33 [String] split(String regex, int limit) 根据匹配给定的正则表达式来拆分此字符串。
34 boolean startsWith(String prefix) 测试此字符串是否以指定的前缀开始。
35 boolean startsWith(String prefix, int toffset) 测试此字符串从指定索引开始的子字符串是否以指定前缀开始。
36 CharSequence subSequence(int beginIndex, int endIndex) 返回一个新的字符序列,它是此序列的一个子序列。
37 String substring(int beginIndex) 返回一个新的字符串,它是此字符串的一个子字符串。
38 String substring(int beginIndex, int endIndex) 返回一个新字符串,它是此字符串的一个子字符串。
39 [char] toCharArray() 将此字符串转换为一个新的字符数组。
40 String toLowerCase() 使用默认语言环境的规则将此 String 中的所有字符都转换为小写。
41 String toLowerCase(Locale locale) 使用给定 Locale 的规则将此 String 中的所有字符都转换为小写。
42 String toString() 返回此对象本身(它已经是一个字符串!)。
43 String toUpperCase() 使用默认语言环境的规则将此 String 中的所有字符都转换为大写。
44 String toUpperCase(Locale locale) 使用给定 Locale 的规则将此 String 中的所有字符都转换为大写。
45 String trim() 返回字符串的副本,忽略前导空白和尾部空白。
46 static String valueOf(primitive data type x) 返回给定data type类型x参数的字符串表示形式。
47 contains(CharSequence chars) 判断是否包含指定的字符系列。
48 isEmpty() 判断字符串是否为空。

StringBuffer 和 StringBuilder 类

当对字符串进行修改的时候,需要使用StringBufferStringBuilder类。

和 String 类不同的是StringBufferStringBuilder类的对象能够被多次的修改,并且不产生新的未使用对象。

在使用 StringBuffer 类时,每次都会对 StringBuffer 对象本身进行操作,而不是生成新的对象,所以如果需要**对字符串进行修改推荐使用StringBuffer**。

StringBuilder 类在 Java 5 中被提出,它和 StringBuffer 之间的最大不同在于 StringBuilder 的方法不是线程安全的(不能同步访问)。

由于 StringBuilder 相较于 StringBuffer 有速度优势,所以多数情况下建议使用 StringBuilder 类。

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Test{
public static void main(String args[]){
StringBuilder sb = new StringBuilder(10);
sb.append("Runoob..");
System.out.println(sb);
sb.append("!");
System.out.println(sb);
sb.insert(8, "Java");
System.out.println(sb);
sb.delete(5,8);
System.out.println(sb);
}
}

编译运行结果如下:

然而在应用程序要求线程安全的情况下,则必须使用 StringBuffer 类。

1
2
3
4
5
6
7
8
9
10
public class Test{
public static void main(String args[]){
StringBuffer sBuffer = new StringBuffer("博客网址");
sBuffer.append("https://");
sBuffer.append("s1gma0");
sBuffer.append(".github");
sBuffer.append(".io");
System.out.println(sBuffer);
}
}

编译运行结果为:

StringBuffer 方法

以下是 StringBuffer 类支持的主要方法:

序号 方法描述
1 public StringBuffer append(String s) 将指定的字符串追加到此字符序列。
2 public StringBuffer reverse() 将此字符序列用其反转形式取代。
3 public delete(int start, int end) 移除此序列的子字符串中的字符。
4 public insert(int offset, int i) 将 int 参数的字符串表示形式插入此序列中。
5 insert(int offset, String str) 将 str 参数的字符串插入此序列中。
6 replace(int start, int end, String str) 使用给定 String 中的字符替换此序列的子字符串中的字符。

以下列表列出了 StringBuffer 类的其他常用方法:

序号 方法描述
1 int capacity() 返回当前容量。
2 char charAt(int index) 返回此序列中指定索引处的 char 值。
3 void ensureCapacity(int minimumCapacity) 确保容量至少等于指定的最小值。
4 void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin) 将字符从此序列复制到目标字符数组 dst
5 int indexOf(String str) 返回第一次出现的指定子字符串在该字符串中的索引。
6 int indexOf(String str, int fromIndex) 从指定的索引处开始,返回第一次出现的指定子字符串在该字符串中的索引。
7 int lastIndexOf(String str) 返回最右边出现的指定子字符串在此字符串中的索引。
8 int lastIndexOf(String str, int fromIndex) 返回 String 对象中子字符串最后出现的位置。
9 int length() 返回长度(字符数)。
10 void setCharAt(int index, char ch) 将给定索引处的字符设置为 ch
11 void setLength(int newLength) 设置字符序列的长度。
12 CharSequence subSequence(int start, int end) 返回一个新的字符序列,该字符序列是此序列的子序列。
13 String substring(int start) 返回一个新的 String,它包含此字符序列当前所包含的字符子序列。
14 String substring(int start, int end) 返回一个新的 String,它包含此序列当前所包含的字符子序列。
15 String toString() 返回此序列中数据的字符串表示形式。

Number & Math 类

一般地,当需要使用数字的时候,我们通常使用内置数据类型,如:byte、int、long、double 等。

然而,在实际开发过程中,我们经常会遇到需要使用对象,而不是内置数据类型的情形。为了解决这个问题,Java 语言为每一个内置数据类型提供了对应的包装类。

所有的包装类(Integer、Long、Byte、Double、Float、Short)都是抽象类 Number 的子类。

包装类 基本数据类型
Boolean boolean
Byte byte
Short short
Integer int
Long long
Character char
Float float
Double double

这种由编译器特别支持的包装称为装箱,所以当内置数据类型被当作对象使用的时候,编译器会把内置类型装箱为包装类。相似的,编译器也可以把一个对象拆箱为内置类型。Number 类属于 java.lang 包。

下面是一个使用 Integer 对象的实例:

1
2
3
4
5
6
7
public class Test{
public static void main(String[] args){
Integer num = 6 ;
num++;
System.out.println(num);
}
}

当 x 被赋为整型值时,由于x是一个对象,所以编译器要对x进行装箱。然后,为了使x能进行加运算,所以要对x进行拆箱。

编译运行结果为:

Math 类

Java 的 Math 包含了用于执行基本数学运算的属性和方法,如初等指数、对数、平方根和三角函数。

Math 的方法都被定义为 static 形式,通过 Math 类可以在主函数中直接调用

1
2
3
4
5
6
7
8
9
10
public class Test{
public static void main(String[] args){
System.out.println("90°的正弦值:" + Math.sin(Math.PI/2));
System.out.println("0°的余弦值:" + Math.cos(0));
System.out.println("60°的正切值:" + Math.tan(Math.PI/3));
System.out.println("1的反正切值:" + Math.atan(1));
System.out.println("π/2的角度值:" + Math.toDegrees(Math.PI/2));
System.out.println("π的值为:" + Math.PI);
}
}

编译运行结果如下:

Number & Math 类方法

下面的表中列出的是 Number & Math 类常用的一些方法:

序号 方法与描述
1 xxxValue() 将 Number 对象转换为xxx数据类型的值并返回。
2 compareTo() 将number对象与参数比较。
3 equals() 判断number对象是否与参数相等。
4 valueOf() 返回一个 Number 对象指定的内置数据类型
5 toString() 以字符串形式返回值。
6 parseInt() 将字符串解析为int类型。
7 abs() 返回参数的绝对值。
8 ceil() 返回大于等于( >= )给定参数的的最小整数,类型为双精度浮点型。
9 floor() 返回小于等于(<=)给定参数的最大整数 。
10 rint() 返回与参数最接近的整数。返回类型为double。
11 round() 它表示四舍五入,算法为 **Math.floor(x+0.5)**,即将原来的数字加上 0.5 后再向下取整,所以,Math.round(11.5) 的结果为12,Math.round(-11.5) 的结果为-11。
12 min() 返回两个参数中的最小值。
13 max() 返回两个参数中的最大值。
14 exp() 返回自然数底数e的参数次方。
15 log() 返回参数的自然数底数的对数值。
16 pow() 返回第一个参数的第二个参数次方。
17 sqrt() 求参数的算术平方根。
18 sin() 求指定double类型参数的正弦值。
19 cos() 求指定double类型参数的余弦值。
20 tan() 求指定double类型参数的正切值。
21 asin() 求指定double类型参数的反正弦值。
22 acos() 求指定double类型参数的反余弦值。
23 atan() 求指定double类型参数的反正切值。
24 atan2() 将笛卡尔坐标转换为极坐标,并返回极坐标的角度值。
25 toDegrees() 将参数转化为角度。
26 toRadians() 将角度转换为弧度。
27 random() 返回一个随机数。

Math 的 floor,round 和 ceil 方法实例比较

参数 Math.floor Math.round Math.ceil
1.4 1 1 2
1.5 1 2 2
1.6 1 2 2
-1.4 -2 -1 -1
-1.5 -2 -1 -1
-1.6 -2 -2 -1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Test {   
public static void main(String[] args) {
double[] nums = { 1.4, 1.5, 1.6, -1.4, -1.5, -1.6 };
for (double num : nums) {
test(num);
}
}

private static void test(double num) {
System.out.println("Math.floor(" + num + ")=" + Math.floor(num));
System.out.println("Math.round(" + num + ")=" + Math.round(num));
System.out.println("Math.ceil(" + num + ")=" + Math.ceil(num));
}
}

编译运行结果如下:

流(Stream)、文件(File)和IO

Java.io 包几乎包含了所有操作输入、输出需要的类。所有这些流类代表了输入源和输出目标。

Java.io 包中的流支持很多种格式,比如:基本类型、对象、本地化字符集等等。

一个流可以理解为一个数据的序列。输入流表示从一个源读取数据,输出流表示向一个目标写数据。

Java 为 I/O 提供了强大的而灵活的支持,使其更广泛地应用到文件传输和网络编程中。

读取控制台输入

Java 的控制台输入由 System.in 完成。

为了获得一个绑定到控制台的字符流,你可以把 System.in 包装在一个 BufferedReader 对象中来创建一个字符流。

下面是创建 BufferedReader 的基本语法:

1
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

BufferedReader 对象创建后,我们便可以使用 read() 方法从控制台读取一个字符,或者用 readLine() 方法读取一个字符串。

Scanner 类

java.util.Scanner 是 Java5 的新特征,我们可以通过 Scanner 类来获取用户的输入。

下面是创建 Scanner 对象的基本语法:

1
Scanner s = new Scanner(System.in);

接下来我们演示一个最简单的数据输入,并通过 Scanner 类的 next() 与 nextLine() 方法获取输入的字符串,在读取前我们一般需要 使用 hasNext 与 hasNextLine 判断是否还有输入的数据:

使用 next 方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import java.util.Scanner;

public class ScannerDemo {
public static void main(String[] args){
Scanner data = new Scanner(System.in);
// 从键盘接收数据

// next方式接收字符串
System.out.println("以next方式接收:");
// 判断是否还有输入
if(data.hasNext()){
String str1 = data.next();
System.out.println("输入的数据为:" + str1);
}
data.close();
}
}

执行以上程序输出结果为:

可以看到 blog 字符串并未输出,接下来我们看 nextLine。

使用 nextLine 方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import java.util.Scanner;

public class ScannerDemo{
public static void main(String[] args){
Scanner data = new Scanner(System.in);
// 从键盘接收数据

// nextLine方式接收字符串
System.out.println("以nextLine方式接收:");

//判断是否还有输入
if(data.hasNextLine()){
String str = data.nextLine();
System.out.println("输入的数据为:" + str);
}
data.close();
}
}

结果如下:

空格后的blog可以被检测到。

next() 与 nextLine() 区别

next():

  • 1、一定要读取到有效字符后才可以结束输入。
  • 2、对输入有效字符之前遇到的空白,next() 方法会自动将其去掉。
  • 3、只有输入有效字符后才将其后面输入的空白作为分隔符或者结束符。
  • next() 不能得到带有空格的字符串

nextLine():

  • 1、以Enter为结束符,也就是说 nextLine()方法返回的是输入回车之前的所有字符
  • 2、可以获得空白

如果要输入 int 或 float 类型的数据,在 Scanner 类中也有支持,但是在输入之前最好先使用 hasNextXxx() 方法进行验证,再使用 nextXxx() 来读取:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import java.util.Scanner;

public class ScannerDemo {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
// 从键盘接收数据
int i = 0;
float f = 0.0f;
System.out.print("输入整数:");
if (scan.hasNextInt()) {
// 判断输入的是否是整数
i = scan.nextInt();
// 接收整数
System.out.println("整数数据:" + i);
} else {
// 输入错误的信息
System.out.println("输入的不是整数!");
}
System.out.print("输入小数:");
if (scan.hasNextFloat()) {
// 判断输入的是否是小数
f = scan.nextFloat();
// 接收小数
System.out.println("小数数据:" + f);
} else {
// 输入错误的信息
System.out.println("输入的不是小数!");
}
scan.close();
}
}

结果如下:

以下实例我们可以输入多个数字,并求其总和与平均数,每输入一个数字用回车确认,通过输入非数字来结束输入并输出执行结果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import java.util.Scanner;

public class ScannerDemo{
public static void main(String[] args){
System.out.println("请输入数字:");
Scanner scan = new Scanner(System.in);

double sum = 0;
int n = 0;

while(scan.hasNextDouble()){
double x = scan.nextDouble();
n++;
sum+=x;
}

System.out.println(n + "个数的和为:" + sum);
System.out.println(n + "个数的平均值为:" + (sum/2));
}
}

结果如下(输入非数字来结束输入):

异常处理

异常是程序中的一些错误,但并不是所有的错误都是异常,并且错误有时候是可以避免的。

比如说,你的代码少了一个分号,那么运行出来结果是提示是错误 java.lang.Error;如果你用System.out.println(11/0),那么你是因为你用0做了除数,会抛出 java.lang.ArithmeticException 的异常。

异常发生的原因有很多,通常包含以下几大类:

  • 用户输入了非法数据。
  • 要打开的文件不存在。
  • 网络通信时连接中断,或者JVM内存溢出。

这些异常有的是因为用户错误引起,有的是程序错误引起的,还有其它一些是因为物理错误引起的。-

要理解Java异常处理是如何工作的,你需要掌握以下三种类型的异常:

  • 检查性异常:最具代表的检查性异常是用户错误或问题引起的异常,这是程序员无法预见的。例如要打开一个不存在文件时,一个异常就发生了,这些异常在编译时不能被简单地忽略。
  • 运行时异常: 运行时异常是可能被程序员避免的异常。与检查性异常相反,运行时异常可以在编译时被忽略。
  • 错误: 错误不是异常,而是脱离程序员控制的问题。错误在代码中通常被忽略。例如,当栈溢出时,一个错误就发生了,它们在编译也检查不到的。

Exception 类的层次

所有的异常类是从 java.lang.Exception 类继承的子类。

Exception 类是 Throwable 类的子类。除了Exception类外,Throwable还有一个子类Error 。

Java 程序通常不捕获错误。错误一般发生在严重故障时,它们在Java程序处理的范畴之外。

Error 用来指示运行时环境发生的错误。

例如,JVM 内存溢出。一般地,程序不会从错误中恢复。

异常类有两个主要的子类:IOException 类和 RuntimeException 类。

在 Java 内置类中,有大部分常用检查性和非检查性异常。

Java 内置异常类

Java 语言定义了一些异常类在 java.lang 标准包中。

标准运行时异常类的子类是最常见的异常类。由于 java.lang 包是默认加载到所有的 Java 程序的,所以大部分从运行时异常类继承而来的异常都可以直接使用

Java 根据各个类库也定义了一些其他的异常,下面的表中列出了 Java 的非检查性异常

异常 描述
ArithmeticException 当出现异常的运算条件时,抛出此异常。例如,一个整数”除以零”时,抛出此类的一个实例。
ArrayIndexOutOfBoundsException 用非法索引访问数组时抛出的异常。如果索引为负或大于等于数组大小,则该索引为非法索引。
ArrayStoreException 试图将错误类型的对象存储到一个对象数组时抛出的异常。
ClassCastException 当试图将对象强制转换为不是实例的子类时,抛出该异常。
IllegalArgumentException 抛出的异常表明向方法传递了一个不合法或不正确的参数。
IllegalMonitorStateException 抛出的异常表明某一线程已经试图等待对象的监视器,或者试图通知其他正在等待对象的监视器而本身没有指定监视器的线程。
IllegalStateException 在非法或不适当的时间调用方法时产生的信号。换句话说,即 Java 环境或 Java 应用程序没有处于请求操作所要求的适当状态下。
IllegalThreadStateException 线程没有处于请求操作所要求的适当状态时抛出的异常。
IndexOutOfBoundsException 指示某排序索引(例如对数组、字符串或向量的排序)超出范围时抛出。
NegativeArraySizeException 如果应用程序试图创建大小为负的数组,则抛出该异常。
NullPointerException 当应用程序试图在需要对象的地方使用 null 时,抛出该异常
NumberFormatException 当应用程序试图将字符串转换成一种数值类型,但该字符串不能转换为适当格式时,抛出该异常。
SecurityException 由安全管理器抛出的异常,指示存在安全侵犯。
StringIndexOutOfBoundsException 此异常由 String 方法抛出,指示索引或者为负,或者超出字符串的大小。
UnsupportedOperationException 当不支持请求的操作时,抛出该异常。

下面的表中列出了 Java 定义在 java.lang 包中的检查性异常类

异常 描述
ClassNotFoundException 应用程序试图加载类时,找不到相应的类,抛出该异常。
CloneNotSupportedException 当调用 Object 类中的 clone 方法克隆对象,但该对象的类无法实现 Cloneable 接口时,抛出该异常。
IllegalAccessException 拒绝访问一个类的时候,抛出该异常。
InstantiationException 当试图使用 Class 类中的 newInstance 方法创建一个类的实例,而指定的类对象因为是一个接口或是一个抽象类而无法实例化时,抛出该异常。
InterruptedException 一个线程被另一个线程中断,抛出该异常。
NoSuchFieldException 请求的变量不存在
NoSuchMethodException 请求的方法不存在

异常方法

下面的列表是 Throwable 类的主要方法:

序号 方法及说明
1 public String getMessage() 返回关于发生的异常的详细信息。这个消息在Throwable 类的构造函数中初始化了。
2 public Throwable getCause() 返回一个 Throwable 对象代表异常原因。
3 public String toString() 返回此 Throwable 的简短描述。
4 public void printStackTrace() 将此 Throwable 及其回溯打印到标准错误流。。
5 public StackTraceElement [] getStackTrace() 返回一个包含堆栈层次的数组。下标为0的元素代表栈顶,最后一个元素代表方法调用堆栈的栈底。
6 public Throwable fillInStackTrace() 用当前的调用栈层次填充Throwable 对象栈层次,添加到栈层次任何先前信息中。

捕获异常

使用 try 和 catch 关键字可以捕获异常。try/catch 代码块放在异常可能发生的地方。

try/catch代码块中的代码称为保护代码,使用 try/catch 的语法如下:

1
2
3
4
5
6
7
try
{
// 程序代码
}catch(ExceptionName e1)
{
//Catch 块
}

Catch 语句包含要捕获异常类型的声明。当保护代码块中发生一个异常时,try 后面的 catch 块就会被检查。

如果发生的异常包含在 catch 块中,异常会被传递到该 catch 块,这和传递一个参数到方法是一样。

实例

下面的例子中声明有两个元素的一个数组,当代码试图访问数组的第四个元素的时候就会抛出一个异常。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import java.io.*;

public class ExcepTest {
public static void main(String[] args){
try{
int arr[] = new int[2];
System.out.println("Access element three : " + arr[3]);
}catch(ArrayIndexOutOfBoundsException e)
{ //ArrayIndexOutOfBoundsException用非法索引访问数组时抛出的异常。如果索引为负或大于等于数组大小,则该索引为非法索引。
System.out.println("Exception thrown : " + e);
}
System.out.println("Out of the block");
}
}

编译运行结果如下:

多重捕获块

一个 try 代码块后面跟随多个 catch 代码块的情况就叫多重捕获

多重捕获块的语法如下所示:

1
2
3
4
5
6
7
8
9
try{
// 程序代码
}catch(异常类型1 异常的变量名1){
// 程序代码
}catch(异常类型2 异常的变量名2){
// 程序代码
}catch(异常类型3 异常的变量名3){
// 程序代码
}

上面的代码段包含了 3 个 catch块。

可以在 try 语句后面添加任意数量的 catch 块。

如果保护代码中发生异常,异常被抛给第一个 catch 块。

如果抛出异常的数据类型与 ExceptionType1 匹配,它在这里就会被捕获。

如果不匹配,它会被传递给第二个 catch 块。

如此,直到异常被捕获或者通过所有的 catch 块。

实例

该实例展示了怎么使用多重 try/catch。

1
2
3
4
5
6
7
8
9
10
try {
file = new FileInputStream(fileName);
x = (byte) file.read();
} catch(FileNotFoundException f) { // Not valid!
f.printStackTrace();
return -1;
} catch(IOException i) {
i.printStackTrace();
return -1;
}

throws/throw 关键字

在Java中, throwthrows 关键字是用于处理异常的。

throw 关键字用于在代码中抛出异常,而 throws 关键字用于在方法声明中指定可能会抛出的异常类型。

throw 关键字

throw 关键字用于在当前方法中抛出一个异常。

通常情况下,当代码执行到某个条件下无法继续正常执行时,可以使用 throw 关键字抛出异常,以告知调用者当前代码的执行状态。

例如,下面的代码中,在方法中判断 num 是否小于 0,如果是,则抛出一个 IllegalArgumentException 异常。

1
2
3
4
5
public void checkNumber(int num){
if(num < 0){
throw new IllegalArgumentException("Number must be postive!");
}
}

throws 关键字

throws 关键字用于在方法声明中指定该方法可能抛出的异常。当方法内部抛出指定类型的异常时,该异常会被传递给调用该方法的代码,并在该代码中处理异常。

例如,下面的代码中,当 readFile 方法内部发生 IOException 异常时,会将该异常传递给调用该方法的代码。在调用该方法的代码中,必须捕获或声明处理 IOException 异常。

1
2
3
4
5
6
7
8
9
public void readFile(String filePath) throws IOException {
BufferedReader reader = new BufferedReader(new FileReader(filePath));
String line = reader.readLine();
while (line != null) {
System.out.println(line);
line = reader.readLine();
}
reader.close();
}

一个方法可以声明抛出多个异常,多个异常之间用逗号隔开。

例如,下面的方法声明抛出 RemoteException 和 InsufficientFundsException:

1
2
3
4
5
6
7
8
9
import java.io.*;
public class className
{
public void withdraw(double amount) throws RemoteException,InsufficientFundsException
{
// Method implementation
}
//Remainder of class definition
}

finally关键字

finally 关键字用来创建在 try 代码块后面执行的代码块。

无论是否发生异常,finally 代码块中的代码总会被执行

在 finally 代码块中,可以运行清理类型等收尾善后性质的语句。

finally 代码块出现在 catch 代码块最后,语法如下:

1
2
3
4
5
6
7
8
9
try{
// 程序代码
}catch(异常类型1 异常的变量名1){
// 程序代码
}catch(异常类型2 异常的变量名2){
// 程序代码
}finally{
// 程序代码
}

实例:finally代码块里有收尾善后性质的语句

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class ExcepTest{
public static void main(String[] args){
int arr[] = new int[2];
try{
System.out.println("Access element three : " + arr[3]);
}catch(ArrayIndexOutOfBoundsException e)
{
System.out.println("Exception thrown: " + e);
}
finally{
arr[0] = 6;
System.out.println("First element value: " + arr[0]);
System.out.println("The finally statement is executed");
}
}
}

编译运行结果为:

注意

  • catch 不能独立于 try 存在。
  • 在 try/catch 后面添加 finally 块并非强制性要求的。
  • try 代码后不能既没 catch 块也没 finally 块。
  • try, catch, finally 块之间不能添加任何代码

try-with-resources

JDK7 之后,Java 新增的 try-with-resource 语法糖来打开资源,并且可以在语句执行完毕后确保每个资源都被自动关闭 。

JDK7 之前所有被打开的系统资源,比如流、文件或者 Socket 连接等,都需要被开发者手动关闭,否则将会造成资源泄露。

try-with-resource的用法如下:

1
2
3
4
5
try (resource declaration) {
// 使用的资源
} catch (ExceptionType e1) {
// 异常块
}

以上的语法中 try 用于声明和实例化资源,catch 用于处理关闭资源时可能引发的所有异常。

注意:try-with-resources 语句关闭所有实现 AutoCloseable 接口的资源。

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import java.io.*;

public class ExcepTest{
public static void main(String[] args){
String line;
try(BufferedReader br = new BufferedReader(new FileReader("test.txt"))){
while((line = br.readLine()) != null){
System.out.println("Line =>"+line);
}
}catch(IOException e)
{
System.out.println("IOException in try block =>" + e.getMessage());
}
}
}

编译运行结果如下:

以上实例中,我们实例一个 BufferedReader 对象从 test.txt 文件中读取数据。

在 try-with-resources 语句中声明和实例化 BufferedReader 对象,执行完毕后实例资源,不需要考虑 try 语句是正常执行还是抛出异常。

如果发生异常,可以使用 catch 来处理异常。

再看下不使用 try-with-resources 而改成 finally 来关闭资源,整体代码量多了很多,而且更复杂繁琐了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import java.io.*;

class ExcepTest {
public static void main(String[] args) {
BufferedReader br = null;
String line;

try {
System.out.println("Entering try block");
br = new BufferedReader(new FileReader("test.txt"));
while ((line = br.readLine()) != null) {
System.out.println("Line =>"+line);
}
} catch (IOException e) {
System.out.println("IOException in try block =>" + e.getMessage());
} finally {
System.out.println("Entering finally block");
try {
if (br != null) {
br.close();
}
} catch (IOException e) {
System.out.println("IOException in finally block =>"+e.getMessage());
}
}
}
}


//结果如下
Entering try block
IOException in try block =>test.txt (No such file or directory)
Entering finally block

try-with-resources 处理多个资源

try-with-resources 语句中可以声明多个资源,方法是使用分号 ; 分隔各个资源:

实例

1
2
3
4
5
6
7
8
9
10
11
12
import java.io.*;
import java.util.*;
class ExcepTest {
public static void main(String[] args) throws IOException{
try (Scanner scanner = new Scanner(new File("testRead.txt"));
PrintWriter writer = new PrintWriter(new File("testWrite.txt"))) {
while (scanner.hasNext()) {
writer.print(scanner.nextLine());
}
}
}
}

以上实例使用 Scanner 对象从 testRead.txt 文件中读取一行并将其写入新的 testWrite.txt 文件中。

多个声明资源时,try-with-resources 语句以相反的顺序关闭这些资源。 在本例中,PrintWriter 对象先关闭,然后 Scanner 对象关闭。

声明自定义异常

在 Java 中你可以自定义异常。编写自己的异常类时需要记住下面的几点。

  • 所有异常都必须是 Throwable 的子类。
  • 如果希望写一个检查性异常类,则需要继承 Exception 类。
  • 如果你想写一个运行时异常类,那么需要继承 RuntimeException 类。

可以像下面这样定义自己的异常类:

1
2
3
class MyException extends Exception{   
//继承了Exception类,是检查性异常类
}

只继承Exception 类来创建的异常类是检查性异常类。

下面的 InsufficientFundsException 类是用户定义的异常类,它继承自 Exception。

一个异常类和其它任何类一样,包含有变量和方法。

实例

以下实例是一个银行账户的模拟,通过银行卡的号码完成识别,可以进行存钱和取钱的操作。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 文件名InsufficientFundsException.java
import java.io.*;

//自定义异常类,继承Exception类
public class InsufficientFundsException extends Exception
{
//此处的amount用来储存当出现异常(取出钱多于余额时)所缺乏的钱
private double amount;
public InsufficientFundsException(double amount)
{
this.amount = amount;
}
public double getAmount()
{
return amount;
}
}

为了展示如何使用我们自定义的异常类,

在下面的 CheckingAccount 类中包含一个 withdraw() 方法抛出一个 InsufficientFundsException 异常。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// 文件名称 CheckingAccount.java
import java.io.*;

//此类模拟银行账户
public class CheckingAccount
{
//balance为余额,number为卡号
private double balance;
private int number;
public CheckingAccount(int number)
{
this.number = number;
}
//方法:存钱
public void deposit(double amount)
{
balance += amount;
}
//方法:取钱
public void withdraw(double amount) throws
InsufficientFundsException
{
if(amount <= balance)
{
balance -= amount;
}
else
{
double needs = amount - balance;
throw new InsufficientFundsException(needs);
}
}
//方法:返回余额
public double getBalance()
{
return balance;
}
//方法:返回卡号
public int getNumber()
{
return number;
}
}

下面的 BankDemo 程序示范了如何调用 CheckingAccount 类的 deposit() 和 withdraw() 方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
//文件名称 BankDemo.java
public class BankDemo
{
public static void main(String [] args)
{
CheckingAccount c = new CheckingAccount(101);
System.out.println("Depositing $500...");
c.deposit(500.00);
try
{
System.out.println("\nWithdrawing $100...");
c.withdraw(100.00);
System.out.println("\nWithdrawing $600...");
c.withdraw(600.00);
}catch(InsufficientFundsException e)
{
System.out.println("Sorry, but you are short $"
+ e.getAmount());
e.printStackTrace();
}
}
}

编译上面三个文件,并运行程序 BankDemo,得到结果如下所示:

1
2
3
4
5
6
7
8
9
Depositing $500...

Withdrawing $100...

Withdrawing $600...
Sorry, but you are short $200.0
InsufficientFundsException
at CheckingAccount.withdraw(CheckingAccount.java:25)
at BankDemo.main(BankDemo.java:13)

通用异常

在Java中定义了两种类型的异常和错误。

  • JVM(Java虚拟机) 异常:由 JVM 抛出的异常或错误。例如:NullPointerException 类,ArrayIndexOutOfBoundsException 类,ClassCastException 类。
  • 程序级异常:由程序或者API程序抛出的异常。例如 IllegalArgumentException 类,IllegalStateException 类。